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Non-technical summary

Research Question

Central banks require a reliable assessment of the past, current and future state of the

economy to conduct monetary policy, such as setting key interest rates. Although the

recent nowcasting literature has proposed models that can e�ciently deal with the prop-

erties of the real-time data �ow, such as mixed data frequencies and publication lags,

these models usually do not allow for time-variation in parameters. We hence ask the

question whether we can design a model that can deal with both, the issues implied by

the real-time data �ow and structural instabilities. If so, can this model add to the now-

casting toolbox by providing more precise forecasts or does the added complexity disrupt

any potential improvements?

Contribution

We introduce a novel time-varying parameter mixed-frequency dynamic factor model that

can e�ciently deal with the issues implied by the real-time data �ow as well as parameter

change. Moreover, we propose an algorithm that is optimized for fast estimation. This

feature not only allows the forecaster to combine forecasts from various model speci�ca-

tions, but also provides additional transparency in the black-box environment of factor

models. To sum up, we combine the merits of both, the recent nowcasting literature as

well as the literature on time-varying parameters and model averaging.

Results

In an empirical forecasting exercise of the growth rate of the real gross domestic product in

Germany, we �nd that our model can improve upon the forecast performance of competing

models. These forecast performance gains arise mostly during periods of turmoil such as

the recent �nancial crisis.



Nichttechnische Zusammenfassung

Fragestellung

Zentralbanken benötigen eine verlässliche Einschätzung der vergangenen, gegenwärtigen

und zukünftigen wirtschaftlichen Lage bei geldpolitischen Entscheidungen, wie z.B. beim

Festlegen der Leitzinsen. Obwohl die Nowcasting Literatur Modelle hervorgebracht hat,

die auf e�ziente Weise mit den Eigenschaften des sogenanten �real-time data �ow�, wie

gemischte Frequenzen und Verö�entlichungsverzögerungen, umgehen können, werden Pro-

bleme wie Zeitvariation in den Parametern üblicherweise vernachlässigt. Die Frage dieser

Forschungsarbeit ist deshalb, ob sich ein Prognosemodell entwicklen lässt, das sowohl die

Eigenschaften des sogenannten �real-time data �ow�, als auch die Zeitvariation der Para-

meter berücksichtigt. Falls ja, kann dieses Modell präzisere Prognosen liefern oder führt

die erhöhte Komplexität zu einem Verlust potenzieller Vorteile?

Beitrag

Wir stellen ein neues dynamisches Faktormodell vor, das sowohl gemischte Frequenzen

und Verö�entlichungsverzögerungen, als auch Zeitvariation der Parameter berücksichtigt.

Zusätzlich entwickeln wir einen Algorithmus, der eine schnelle Schätzung des Modells

erlaubt. Diese Eigenschaft ermöglicht nicht nur die Schätzung unterschiedlicher Modells-

pezi�kationen und die Kombination der daraus resultierenden Prognosen, sondern scha�t

auch erhöhte Transparenz in Bezug auf die sonst schwer interpretierbaren Faktormodelle.

Zusammengefasst kombinieren wir die Vorteile der jungen Nowcasting Literatur und der

Literatur, die sich mit zeitvariierenden Parametern und der Kombination von Prognosen

beschäftigt.

Ergebnisse

In einer empirischen Anwendung auf das Wachstum des realen Bruttoinlandsprodukts in

Deutschland stellen wir fest, dass unser Modell im Vergleich zu konkurierenden Modellen

eine verbesserte Prognosegüte besitzt. Diese Verbesserung zeigt sich vor allem in Zeiten

ökonomischer Turbulenzen wie der jüngsten Finanzkrise.
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1 Introduction

Policy makers such as central banks require an assessment of the past, current and future
state of economic activity to conduct informed and responsible monetary policy. Actual
statistics especially on key economic indicators, such as GDP or unemployment are, how-
ever, only available with considerable delay. Therefore the recent nowcasting literature
aims at developing macroeconomic models that rely on information that is available in a
more timely manner to produce early estimates of GDP and other key indicators alike,
when they are not yet available. The indicators' availability at often di�erent frequen-
cies, asynchronous release dates and publication lags as well as changing dynamics of the
economy, however, impose challenges on nowcasting models that are a unique feature of
this literature and require speci�cally tailored model solutions.

There is a growing number of studies addressing these speci�c requirements. Mariano
and Murasawa (2003) develop a mixed-frequency dynamic factor model, which is able
to deal with missing data due to publication delays and non-uniform data frequencies.
Their framework is successfully applied in macroeconomic nowcasting by e.g. Ba«bura,
Giannone, and Reichlin (2010). Besides the issues implied by the real-time data �ow,
a changing economic environment can bring about changes in the economic transition
mechanism, the comovement of variables, and the nature and heteroskedasticity of exoge-
nous shocks. Against this backdrop, Primiceri (2005) and more recently Thorsrud (2018)
introduce time-varying parameters and stochastic volatility into model components of
VARs and factor models to reduce their vulnerability against structural breaks. More-
over, not only parameters but also the forecasting model itself might su�er from model
breakdown, instability, and change, as the economy undergoes structural changes. Baner-
jee, Marcellino, and Masten (2005) con�rm - at least for the euro area - that the "best"
indicator for in�ation and GDP growth is changing over time and suggest updating the
choice of variables continuously. Working with a single parsimonious model that contains
a �xed selection of predictors is hence not advisable. One potential solution to this prob-
lem is model averaging or model selection. Raftery, Kárný, and Ettler (2010) introduce
dynamic model averaging (DMA), which is a recursive implementation of Bayesian model
averaging (BMA) and is able to combat model uncertainty in the context of predicting
the output strip thickness of a cold rolling mill in real-time. In the context of macroeco-
nomic forecasting DMA, where at each point in time the weights of models contained in
a given model space are updated conditional on past forecast performance, and its exten-
sion, dynamic model selection (DMS), where the model with the highest DMA weight is
chosen, are successfully applied by Koop and Korobilis (2011), Koop and Onorante (2013)
and Onorante and Raftery (2016). They �nd that these techniques can greatly improve
the forecast performance compared to conventional models. While the above mentioned
studies address some of the unique requirements of nowcasting models, a uni�ed approach
that deals with all aspects simultaneously seems to be missing. We seek to �ll this gap in
the literature.

We propose a novel time-varying parameters mixed-frequency dynamic factor model
(TVP-MF-DFM) which is integrated in a dynamic model averaging framework for macroe-
conomic nowcasting. In doing so, we contribute to the nowcasting literature in various
ways. First, we build a TVP-MF-DFM that can e�ciently deal with the properties of the
real-time data �ow, parameter change and time variation in the volatility. Regarding these
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characteristics, our model is closely related to that proposed by Thorsrud (2018). Instead
of applying standard Bayesian techniques, however, we follow a di�erent estimation strat-
egy. Second, we develop a fast dual one-step Kalman �lter algorithm which only requires
a single iteration. Therefore, we extend the algorithm proposed by Koop and Korobilis
(2014) to account for mixed-frequency data. This algorithm enables us to estimate a large
model space in a reasonable amount of time which leads to our third contribution. We
estimate our TVP-MF-DFM in a uni�ed dynamic model averaging framework, where now-
casts are based on many di�erent model speci�cations, which accounts for time-varying
forecasting performance. Moreover, our framework is able to generate density forecasts
illustrating the uncertainty around the point forecasts. Finally, utilising DMA we can also
shed light on the time-varying importance of the economic indicators in our data set and
hence on the drivers of nowcasts which might be of paramount interest to policy makers.

In our empirical exercise we apply our TVP-MF-DFM-DMA to nowcast German GDP
and compare its forecast performance to a naive as well as more competitive benchmark
models. Our recursive out-of-sample forecast evaluation results reveal that our suggested
framework can produce forecasts that are superior to those of competing models. These
forecast gains seem to emerge especially during unstable periods, such as the Great Re-
cession, but also remain over more tranquil periods. Overall, the proposed model speci�-
cations manage to improve the forecast accuracy of the naive benchmark by up to 61%.
Compared to more competitive benchmarks, forecast performance improves by up to 40%
in the most favourable case. Moreover, along similar lines to Pettenuzzo and Timmer-
mann (2017), we �nd that accounting for time-varying parameters can indeed improve
forecast performance. In our case these improvements are more pronounced for medium
length forecast horizons and performance based weighting schemes. Additionally, we �nd
that these more elaborate forecast combinations only seem to perform better than simple
averaging schemes for very short forecast horizons, which might be attributed to update
lags that result from publication lags of the target variable as well as the length of the
forecast horizon itself. Furthermore, our results show that the expected model size �uc-
tuates around twelve indicators on average. This also con�rms the �ndings of Bai and Ng
(2008) indicating that �targeted predictors� may improve the forecast accuracy of factor
models. Finally, an indicator heatmap visualizes time-varying importance of predictors
shedding light on the factor black-box.

The remainder of this paper is organized as follows. The next section introduces the
econometric framework and the estimation algorithm. Section 3 provides an overview over
the forecast setup. Section 4 presents the empirical results and the �nal section concludes.

2 Econometric Methodology

2.1 The Modeling Framework

Throughout the following, upper case letters will indicate matrices and lower case letters
will indicate vectors. Further, we adopt the convention that a superscript M (Q) indicates
model components that are related to monthly (quarterly) variables. Let xt denote the n
dimensional zero-mean vector of stationary variables. We now assume that, at monthly
frequency, the economy linearly depends on k latent factors, ft, that are common to all
variables contained in xt and satisfy E(ftut) = 0.
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xt = Λt · ft + ut, ut ∼ N(0, Vt) (1)

The so called common component (Λt · ft) captures the variability in the dependent
variables that is due to the common factors. The idiosyncratic zero-mean Gaussian dis-
turbances ut capture the remaining variability. We assume them to be cross-sectionally
and serially uncorrelated and thus do not model their dynamics. Since Ba«bura and
Modugno (2014) �nd that explicitly accounting for serial correlation does not lead to con-
sistent improvements of GDP forecasts, however, we do not expect this simpli�cation to
in�uence our results noticeably. Given it is not realistic to assume that the factors evolve
independently over time, we further de�ne a dynamic process for the factors that is given
by a pth order VAR

ft = Bt,1ft−1 + · · ·+Bt,pft−p + εt, εt ∼ N(0, Qt) (2)

where εt are again serially uncorrelated zero-mean Gaussian disturbances. It is notewor-
thy that instead of extracting factors and using them to augment univariate forecasting
regressions, we model the variables jointly in a multivariate system. This should improve
the identi�cation of the variables' co-movements and thus bene�t the forecasting results
(also see Koop and Korobilis, 2014).

Empirically, relying on a factor model speci�cation has another appeal. With in-
creasing data availability also macroeconomic forecasting suites have been growing. High
dimensional VARs that potentially contain hundreds of variables, however, might su�er
from the curse of dimensionality. Factor models on the other hand, by relying on only a
few latent factors, can summarize the information contained in large data sets e�ciently
without running into these issues (see e.g. Giannone, Reichlin, and Small, 2008; Koro-
bilis, 2012; Pirschel and Wolters, 2017). Moreover, Pirschel and Wolters (2017) compare
di�erent techniques for extracting the information contained in large data sets and pro-
vide evidence that the combination of factor models and shrinkage - which we implement
through DMA/DMS - seems to be the most e�cient approach.

Given the overwhelming evidence for structural breaks in several U.S. and European
macroeconomic time series provided by Cogley and Sargent (2005), Banerjee, Marcellino,
and Masten (2008), Breitung and Eickmeier (2011) and Bauwens, Koop, Korobilis, and
Rombouts (2015) we further want to equip our dynamic factor model with the neces-
sary �exibility to account for parameter instability. The importance of accounting for
structural breaks in factor models and forecasting models in general in order to achieve
good forecast performance was documented by Banerjee et al. (2008) and Bauwens et al.
(2015), respectively. Generally, changes in the structure of the economy, the monetary pol-
icy regime, the conduct of economic policy or technological change can alter the economic
transition mechanism, the co-movements of variables, and the nature and heteroskedastic-
ity of exogenous shocks (see e.g. Breitung and Eickmeier, 2011; Primiceri, 2005). In case
of the above model, these changes translate to time-variation in the factor loadings, Λt,i,
the parameter matrices in the dynamic factor process, Bt,i, and the variance-covariance
matrices Vt and Qt. Since Pettenuzzo and Timmermann (2017) �nd that TVP models
that allow parameters to change gradually over time outperform Markov Switching and
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Change Point models and improve density as well as point forecasts, we assume that the
vectors of loadings and VAR coe�cients evolve as multivariate random walks

λt = λt−1 + vt, vt ∼ N(0,Wt) (3a)

βt = βt−1 + ηt, ηt ∼ N(0, Rt) (3b)

where λt = vec(Λt) and βt = (vec(Bt,1)
′, . . . , vec(Bt,p)

′)′. Moreover, vt and ηt are serially
uncorrelated and feature the time-varying covariance matricesWt and Rt. All disturbance
vectors are further assumed to evolve independently. This completes the description of
our basic TVP-DFM.

2.2 Temporal Aggregation

As pointed out above, the available economic indicators are usually observed at di�erent
frequencies. While GDP is observed at quarterly frequency, other indicators such as
industrial production are available on a monthly basis. It is common practice to pre-�lter
the data, e.g. by means of temporal aggregation or interpolation, to align the di�erent
frequencies in the data. This might, however, destroy important information and induce
mis-speci�cation (see Foroni and Marcellino, 2013). Since the model given in equations
(1) and (2) is speci�ed at monthly frequency, we follow the nowcasting literature instead
and de�ne the relationship that links the quarterly variables to their latent high frequency
counterparts. This relationship critically hinges on whether the variables of interest are
stock or �ow variables and on how they have been transformed before entering the model.
In case of a quarterly �ow variable such as GDP one has the accounting identity

Y Q
t = Y M

t + Y M
t−1 + Y M

t−2, (4)

where Y M
t denotes the unobserved monthly counterpart of Y Q

t during the respective quar-
ter. After transforming the observed Y Q

t by applying log-di�erences in order to assure
stationarity, one can de�ne the partially observed monthly series1

yQt =

{
log(Y Q

t )− log(Y Q
t−3), t = 3, 6, 9...

unobserved, otherwise,
(5)

where yQt is observed every third month and unobserved during the �rst and second
month of every quarter (see e.g. Ba«bura et al., 2010). Following e.g. Ba«bura et al.
(2010, 2013) and combining equations (4) and (5), one can now apply the approximations
in Mariano and Murasawa (2003, 2010), which yield the �nal aggregation scheme for the
log-di�erenced �ow variable yQt

1 A more general treatment is provided by e.g. Ba«bura, Giannone, Modugno, and Reichlin (2013)
and Aruoba, Diebold, and Scotti (2009).
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yQt = log(Y Q
t )− log(Y Q

t−3) =
2∑
i=0

log
(
Y M
t−i
)
−

2∑
i=0

log
(
Y M
t−i−3

)
≈ yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4, for t = 3, 6, 9...

(6)

where yt = ∆log(Y M
t ). As Ba«bura et al. (2013) point out, this speci�cation keeps the

constraints on the observational relationship linear. The resulting state space can thus
be estimated by means of Kalman �lters (also see Elliott and Timmermann, 2016).

2.3 A TVP-MF-DFM

After having described the TVP-DFM and the aggregation scheme for the quarterly vari-
ables, we can now explore the restrictions which the aggregation scheme imposes on the
structure of the factor model. Let yMt denote the m variables that are originally observed
at monthly frequency and yQt denote the q variables that are only available at quarterly
frequency, where ΛM

t and ΛQ
t denote the corresponding loading matrices. Combining

equation (1) and equation (6) and casting the system into state space form, we have

xt = Htst + ut, ut ∼ N(0, Vt) (7a)

st = Atst−1 + εt, εt ∼ N(0, Qt) (7b)

λt = λt−1 + vt, vt ∼ N(0,Wt) (7c)

βt = βt−1 + ηt, ηt ∼ N(0, Rt) (7d)

with

xt =

[
yMt
yQt

]
, Ht =

[
ΛM
t 0 0 0 0 0(m×p−5)

ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ 0(q×p−5)

]
,

st =
[
ft ft−1 . . . ft−4 . . . ft−p+1

]′
with ΛQ

(q×k), ΛM
(m×k) and

At =


B1,t . . . Bp−1,t Bp,t

I . . . 0 0
...

. . .
...

...
0 . . . I 0

 , ut =

u1,t...
uN,t

 , εt =

et0
...


where Qt is singular with a non-singular block in the upper left corner. Furthermore,
note that Vt is diagonal, which prevents that there exists a continuum of observationally
equivalent models which are de�ned by arbitrary factor dependencies (see Nakajima and
West, 2013). Since the algorithm employed in a later section relies on principal component
estimates as starting values for the factors, the model is identi�ed up to a sign rotation
without having to impose further restrictions on the loadings matrix (also see Koop and
Korobilis, 2014).

The aggregation scheme is absorbed by matrix Ht and implies that the state vector st
must have at least �ve elements. Compared to an approach with augmented regressions,
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this setup thus has the advantage that the monthly as well as the quarterly variables
contribute to the factor estimate. Importantly, note that the loadings matrix of the
quarterly variables, ΛQ, is static. This is due to the fact that time-variation in the loadings
and the aggregation scheme described by equation (6) are in con�ict with each other
(see Thorsrud, 2018). Moreover, note that the same aggregation scheme theoretically
also applies to the idiosyncratic components of the quarterly variables. To simplify the
estimation, however, we follow Ba«bura et al. (2013) and Thorsrud (2018) and stick to
our original assumption. We thus assume that they are serially and cross-sectionally
uncorrelated zero-mean Gaussian disturbances with time-varying covariance matrices at
the frequency at which they are de�ned.

2.4 Estimation Algorithm

Models such as the TVP-VAR of Primiceri (2005) or the TVP-DFM proposed by Del
Negro and Otrok (2008) are usually estimated with Bayesian methods involving Markov
Chain Monte Carlo (MCMC) algorithms, such as Gibbs samplers.2 The obvious drawback
of this procedure, however, is high computational demand. Adding to this, the Kalman
�lters and multivariate stochastic volatility models that are usually used to assess the
conditional distributions of the time-varying parameters and covariance matrices have to
be reestimated at each iteration of the algorithm. The estimation of even a single TVP-
MF-DFM by means of MCMC schemes thus comes at the cost of a high computational
burden. When faced with a recursive forecasting exercise on an expanding window of
data or many di�erent model speci�cations, as is the case with the model averaging
and selection techniques we employ in our empirical exercise, the computational demand
again multiplies and quickly becomes unbearable. In a real world scenario, where a policy
making institution cannot a�ord to wait several days or even weeks for a forecast to be
produced, this renders MCMC schemes inapplicable in our setup.

Instead, for the parameter estimation of our model we develop a fast dual one-step
Kalman �lter algorithm building on the TVP-FAVAR algorithm proposed by Koop and
Korobilis (2014) that only requires one single iteration. The general idea is to circumvent
the need for recursive sampling by conditioning on principal component estimates for the
factors during the estimation of the model parameters and by replacing the multivariate
stochastic volatility models that are usually used for Vt, Qt, Wt, and Rt by variance
discounting methods (see e.g. Aguilar andWest, 1998). Although we stick to using Kalman
�lters to estimate the time-varying parameters and the factors, it is these changes that
break up the recursiveness of the Gibbs algorithm and thus allow for simulation-free
estimation. Our algorithm evolves as follows:

TVP-MF-DFM Algorithm
1) Initialization

(a) Initialize the hyperparameters
(b) Standardize the data
(c) Estimate the preliminary factors, fPCt , by principal components

2) Parameter Estimation given fPCt

2 The reader is referred to Blake and Mumtaz (2017) for an introduction to Bayesian estimation
methods which are widely used in central banks.
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(a) Estimate Vt, Qt, Wt, and Rt using variance discounting methods
(b) Estimate λMt and βt conditional on Vt, Qt, Wt, Rt, and fPCt using Kalman

�lters & smoothers
(c) Estimate λQ conditional on Vt, Qt, Wt, Rt, and fPCt using Kalman �lters &

smoothers
3) Estimate ft conditional on the model parameters using a Kalman �lter & smoother

Given the mixed-frequency structure of our data, we cannot estimate the principal
component factors from xt directly. Instead, we �rst linearly interpolate the periodically
missing values of the quarterly variables and apply a spline smoother to smooth the
resulting step function. The principal component factors, fPCt , are then estimated jointly
from the monthly variables and interpolated quarterly variables.3 For the algorithm to
work well, it is important that these preliminary factors provide a good approximation of
the factors produced by our highly �exible TVP-MF-DFM even in the event of structural
breaks. Although theoretical proof for our highly nonlinear model is not available, Bates,
Plagborg-Møller, Stock, and Watson (2013) show that principal components generally
produce consistent factor estimates even with substantial time-variation in the factor
loadings, as is the case under the speci�cation in equation (7c).

Since most of our algorithm depends on the Kalman �lter, for the reader's convenience
we brie�y introduce the Kalman �lter & smoother equations in Appendix A.1. Using the
Kalman �lter recursions in equations (20a)-(20f) we estimate the factors, ft, conditional
on the parameters and the dependent variables contained in xt. One of the many ap-
peals of working in state space and with Kalman �lters is the easy treatment of missing
values, regardless of whether they occur periodically or at the beginning or end of the
sample. This allows for simultaneous treatment of mixed frequencies, the ragged edge or
other kinds of missing data. Over the years, the literature has proposed many equivalent
approaches. Mariano and Murasawa (2003) propose to impute zeros for yQt when it is
missing and to set the corresponding loadings to zero. Giannone et al. (2008) suggests
setting the residual variance to in�nity instead and Durbin and Koopman (2012) simply
view the dimensions of the state space as time-varying. Although we follow Mariano
and Murasawa (2003), all of these approaches manipulate the state space and induce the
Kalman �lter to �skip� missing observations so that they do not contribute to the new
value of the state vector and its variance. At every point in time, only the information
contained in the observed variables is considered. Finally, we smooth the resulting factor
estimates with the Rauch-Tung-Striebel �xed interval smoother (see Haykin, 2001; Rauch,
Tung, and Striebel, 1965).

Since the innovations in equation (7a) are independent across the variables in xt condi-
tional on knowing st and assuming that the loadings are uncorrelated across variables, we
can sample the loadings equation-by-equation. This allows for separate estimation of λMt
and λQ. To estimate λMt we simply replace the appropriate elements of equations (20a)-
(20f) and equations (21a)-(21c) with their respective counterparts. Most noticeably, since
λMt evolves as a random walk, At drops out of all equations entirely. The estimation of
the static λQ is more complicated due to the aggregation scheme in equation (7a) and the
high degree of time-variation in the model. Relying on e.g. a Bayesian regression requires

3 Note that the results reported in a later section are robust against applying a spline smoother or
using the linearly interpolated series directly.
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knowledge of the variances, V Q
t . To estimate V Q

t as outlined below, however, we require
an estimate of λQ at every point in time. Thus a recursive method to estimate λQ is
needed. Moreover, the sequence of quarterly variables is only partially observed and thus
implies a dependent variable with many missing values. To work around this problem,
we develop a simple trick. First, conditional on the factors, we rotate the state space in
equation (7a) and factor out ΛQ. The relationship is now expressed as the product of the
quarterly loadings and a moving average of the factors.

yQt = ΛQ
t ·

4∑
i=0

ωift−i + ut, ut ∼ N(0, Vt)

ωi =

{
i+ 1, for i = 0, 1, 2

6− i− 1, for i = 3, 4

(8)

To estimate λQ, we now manipulate equation (7c) to read

λQt = λQt−1 (9)

and estimate the static quarterly loadings recursively by means of a Kalman �lter, which
is similar to working with recursive OLS. These changes do not change the structure of
the Kalman �lter equations (20a)-(20f), which simply have to be adapted by replacing the
appropriate elements. Whenever yQt is observed, an update of the static parameter given
the new information set occurs. When it is unobserved we follow our practice from above
and simply do not update λQ. In the forgetting factor framework, which is described
below, the implementation is particularly simple by setting κ3 = 1 for the quarterly
variables, which implies that Wt = 0. The distribution of the residuals thus collapses on
zero. Since λQ is static by construction, it always coincides with the last Kalman �lter
update. As the smoothed λQ estimate, we hence simply accept the most recently updated
estimate for all time periods. Estimation of the VAR coe�cients, βt, again proceeds as in
Koop and Korobilis (2014) and requires a Kalman �lter and smoother following equations
(20a)-(20f) and (21a)-(21c), where we only accept non-explosive draws. To enforce this
restriction, whenever the biggest eigenvalue lies outside the unit circle, we replace the
current βt-update by 0.95 times the previous update. The Kalman �lter recursions then
proceed as before.

The variance discounting methods are simulation free and imply recursive estimation
of Vt, Qt, Wt, and Rt. For Vt and Qt we follow Koop and Korobilis (2014) and use
exponentially weighted moving average estimators (EWMA). This method is appealing,
because EWMA produce minimum mean squared error forecasts (see Muth, 1960) that
are equivalent to those produced by simple state space or simple ARIMA models (see
Durbin and Koopman, 2012). Moreover, as Koop and Korobilis (2014) point out, EWMA
provide an accurate approximation of integrated GARCH models and are thus in line
with the features of the macroeconomic VAR literature that usually works with integrated
stochastic volatility models (see e.g. Primiceri, 2005). Despite relying on this rather simple
algorithm, this allows to stay as close as possible to the standard methods. Equations
(10a, 10b) represent the EWMA estimator, where ui,t and ei,t are backed out according
to equations (7a) and (7b). With slight abuse of notation, Qt(k) denotes the kth leading
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principal submatrix of Qt and diag(utu
′
t) denotes the diagonal matrix of the variance

covariance matrix of the residuals ut. We use the diagonal matrix in equation (10a)
to enforce the standard identifying constraint spelled out in section 2.3 and use the kth
leading principal submatrix in equation (10b) to restrict the EWMA to the nonsingular
block of Qt.

Vt = κ1Vt−1 + (1− κ1) · diag(utu
′
t) (10a)

Qt(k) = κ2Qt−1(k) + (1− κ2)ete′t (10b)

The degree of time-variation in Vt and Qt is governed by the two decay parameters
κ1 and κ2, respectively. As pointed out above, the mixed-frequency structure of our
data introduces periodically missing values in the quarterly variables. Thus, the residuals
necessary to compute the EWMA for V Q

t are only available at the end of each quarter.
We hence follow West and Harrison (1997), who provide suggestions on the treatment of
missing values in EWMA and only update when actual data is available. Throughout the
quarter, the EWMA does not decay and remains at its value.4 This update lag, however,
results in slower time-variation of V Q

t than V M
t even given the same κ1. To compensate

for this e�ect, in our empirical exercise we allow V Q
t and V M

t to change at di�erent rates
and introduce the decay parameters κQ1 and κM1 . Finally we follow Koop and Korobilis
(2014) and produce smoothed estimates of V Q

t , V M
t , and Qt.

For Wt and Rt we use the forgetting factor methods described in Raftery et al. (2010)
and Koop and Korobilis (2012) and thus estimate these matrices directly from the re-
spective state covariance matrix estimate provided by the Kalman �lter. From standard
Kalman �lter inference, we know that λt and βt in equations (7c) and (7d) are given by

λt|Data1:t−1 ∼ N(λt|t−1,Σ
λ
t|t−1) (11a)

βt|Data1:t−1 ∼ N(βt|t−1,Σ
β
t|t−1) (11b)

where by equations (7c) and (7d)

Σλ
t|t−1 = Σλ

t−1|t−1 +Wt (12a)

Σβ
t|t−1 = Σβ

t−1|t−1 +Rt (12b)

Following Raftery et al. (2010) and Koop and Korobilis (2014) one can now de�ne
Wt = (κ−13 − 1)Σλ

t−1|t−1 and Rt = (κ−14 − 1)Σβ
t−1|t−1 to replace equations (12a) and (12b)

by

Σλ
t|t−1 = κ−13 Σλ

t−1|t−1 (13a)

Σβ
t|t−1 = κ−14 Σβ

t−1|t−1 (13b)

4 Since the Kalman �lters treat missing information similarly, this also has the appeal of maintaining
a consistent approach to the treatment of missing data.
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which introduces the forgetting factors, κ3 and κ4, respectively. Hence the model is still
a properly de�ned state space and the Kalman �lters and smoothers proceed in standard
fashion. The interpretation of the decay parameters and forgetting factors is generally
the same. Lower values put lower weight on past observations and thus allow for faster
parameter change. A value of one, however, implies constant parameters. In our empirical
application we use this feature to estimate nested MF-DFM models to assess the merits
of allowing for time-variation.

The smoothed estimates for Vt, Qt, λ
M
t , λQ, βt, and ft take e�ect throughout di�erent

steps of our algorithm and empirical exercise, respectively. In scope of this, we rely on the
smoothed estimates of Vt, Qt, λ

M
t , λQ, and βt when estimating and smoothing the factors

ft. These estimates thus bene�t directly from the smoothed series. Our empirical exercise
- that we introduce in a later section - reaps an additional bene�t from the smoothed time
series. Given that future information is available when backcasts are produced, relying on
smoothed estimates instead of the Kalman �lter results alone allows for exploiting future
information that would otherwise be neglected.

2.5 Dynamic Model Averaging

Given an arbitrary forecasting suite, we are faced with a multitude of TVP-MF-DFM of
di�erent sizes,

x
(j)
t = H

(j)
t s

(j)
t + u

(j)
t , u

(j)
t ∼ N(0, V

(j)
t ) (14a)

s
(j)
t = A

(j)
t s

(j)
t−1 + ε

(j)
t , ε

(j)
t ∼ N(0, Q

(j)
t ) (14b)

λ
(j)
t = λ

(j)
t−1 + v

(j)
t , v

(j)
t ∼ N(0,W

(j)
t ) (14c)

β
(j)
t = β

(j)
t−1 + η

(j)
t , η

(j)
t ∼ N(0, R

(j)
t ) (14d)

where j is a single model from a model space M . Each of the j ∈ [1, . . . , J ] models
features a di�erent subset of variables. Given the number of factors, k, this amounts to
at most 2n−k di�erent variable combinations and hence candidate forecasting models that
could be appropriate at every point in time.

One could of course resort to working with the model containing all predictors or could
attempt to �nd a single parsimonious model that beats its alternatives conditional on the
sample. As pointed out above, structural changes in the economy, however, are likely
to cause model uncertainty, breakdown, and change. While some economic indicators
might predict GDP particularly well during phases of stable growth, they might lose
predictive power during e.g. economic crises and vice versa. Moreover, the same factors
that drive parameter change, such as policy decisions, the demise of industrial sectors or
technological advancement, might alter the forecast performance of economic predictors
naturally over time. Banerjee et al. (2005) con�rm for euro area in�ation and GDP growth
that the �best� predictor is changing over time and suggest updating the choice of variables
continuously. Although it might be possible to �nd a single �best� parsimonious model,
given these �ndings it is likely to be rather dependent on the sample and can thus not be
expected to beat all its alternatives forever. Using the entire set of predictors in a single
model instead, is in turn likely to induce over-parameterization, which again deteriorates
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the out-of-sample forecast performance. No single model with a constant set of predictors
can thus be expected to beat all other models at every point in time (also see Banerjee
et al., 2005).

One possible solution is model selection or model averaging, where in this setup one
would like those methods to be dynamic and computationally cheap. Given the uncer-
tainty surrounding either the �best� model or the �optimal� forecast combination of the
models contained inM , this poses two major challenges. First, one requires an assessment
of the probability that model j applies at time t. Second, conditional on these individual
model probabilities, one needs to either select a model fromM or produce a forecast com-
bination of all models contained in the model space. The time dependence is what makes
this procedure dynamic, where the forecast combinations or the selected models depend
on t instead of the entire sample. Raftery et al. (2010) propose a recursive updating
method called dynamic model averaging (DMA) that is designed to do exactly that and
can be applied as a wrapper method for state space models. Koop and Korobilis (2011,
2012, 2014) and Koop and Onorante (2013) have already successfully applied this frame-
work to the economics literature and �nd that DMA can improve forecast performance.
The appeal of this method is that model averaging/selection is conducted conditional
on the individual past forecast performance of every model. Additionally, by assigning
weights to individual forecasts and thus indirectly to the models' parameters, DMA/DMS
implies shrinkage, which serves to counteract possible over-parameterization especially in
larger models (see Koop and Korobilis, 2011). In a factor model context, the di�erent
sets of variables that form the models contained in M further imply that DMA/DMS
average or select di�erent factor structures. Given the �ndings of Boivin and Ng (2006)
and Ba«bura and Modugno (2014), who provide evidence that factor extraction might
actually su�er when data is added that provides little information about the factors and
increases the noise-to-signal ratio, this has an additional bene�t. In our TVP-MF-DFM
context, DMA/DMS can give more weight to models that combine predictors that provide
more information on the factors and thus facilitate factor extraction. When a model is
based on a dataset with a high noise-to-signal ratio instead, it can simply assign lower
weights. DMS/DMA thus leave it to the data to decide which model or how much of each
model - and with it the implied factor structure - is desirable at each point in time.

To motivate their framework, Raftery et al. (2010) assume a hidden Markov chain for
the model space, where the state of the system itself depends on the current value of the
chain. This is, what allows the �best� model to vary over time. Standard techniques for the
estimation of hidden Markov models, such as particle �lters or ensemble Kalman �lters,
are computationally demanding and thus unfeasible in this application. The fact that all
J models can be estimated independently with the algorithm proposed in the previous
subsection, however, allows for a very simple approximation that involves updating the
models' probabilities individually at each point in time (see Raftery et al., 2010).

In the general framework, πt|t−1,j usually denotes the probability that model j applies
at time t, conditional on the information set valid through t−1. Since it is not reasonable
to believe that this probability is independent of the forecast horizon h, we extend the
general framework and de�ne πt|t−1,j,h. Given that some variables might e.g. be more
informative for longer forecast horizons, while others are more suitable short-term pre-
dictors, this allows the models to �specialize� on forecast horizons. In the DMA/DMS
framework, the models that work best at forecast horizon h, can receive higher proba-
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bilities than models that work best at other horizons. As pointed out above, one now
needs to de�ne how the individual model probabilities evolve through time. Raftery et al.
(2010) propose the following approximations,

πt|t−1,j,h =
πγt−1|t−1,j,h∑J
k=1 π

γ
t−1|t−1,k,h

(15)

πt|t,j,h =
πt|t−1,j,hPLj(Datat|Data1:t−h)∑J
k=1 πt|t−1,k,hPLk(Datat|Data1:t−h)

(16)

where equation (15) is the prediction step and equation (16) is the update step. γ ∈
[0, 1] is another forgetting factor that controls the rate of time-variation in the individual
model probabilities and thus model change. A higher (lower) γ implies slower (faster)
model change. Note that for γ = 1 and γ = 0 the model probabilities are analogous to
those under Bayesian model averaging (BMA) and the simple average, respectively. The
predictive likelihood of model j at time t is denoted by PLj(Datat|Data1:t−h) and serves
as a measure of �t for model j (see Koop and Korobilis, 2014). The model probabilities
thus evolve conditional on the past forecast performance of the individual models at time
t and for forecast horizon h. Dynamic model selection (DMS) forecasts now result if
the forecast of the model with the highest individual probability at time t is selected.
DMA forecasts arise as the model probability weighted average of the J individual model
forecasts.

3 Forecast Setup

3.1 Dataset

We use 20 monthly and quarterly variables for nowcasting GDP in Germany. Alongside
the indicators of real economic activity such as industrial production and unemployment,
we also include sentiment indicators, such as surveys, and �nancial indicators like the 10
year government bond yield or the corporate spread, where the latter also serves as a
risk measure. Global oil production is included to serve as a measure proxy for world-
wide economic activity. In addition to the target variable of our forecasting exercise,
German GDP, we also include quarterly euro area and French GDP, because they are
more timely available and might thus contribute important information. These three
variables compose the block of quarterly variables. All variables enter the model without
lag. The dataset is downloaded from the Deutsche Bundesbank's time series database and
covers a sample period from January 1991 to June 2019 depending on the publication lag
of selected indicators. Table 1 provides an overview of these variables as well as of their
frequency, transformation and publication lags.

Although this data set seems somewhat small, Ba«bura and Modugno (2014) �nd that
information on the total economy is su�cient for obtaining accurate forecasts of GDP.
They compare the forecast performance of a small MF-DFM containing 14 variables, a
medium sized variant containing 46 variables, and a large variant containing 101 variables
on a euro area data set. While the former two perform comparably well, the latter
performs slightly worse. This is in line with new evidence that suggests that more variables
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Table 1: Dataset and real-time data �ow

Indicator Freq. Adj. Tra. 1st Obs. REd7 REd27

CPI In�ation M 1 1 Jan. 92 1 W 3 W
Unemployment M 1 2 Dec. 91 1 W 3 W
Foreign Orders Automotive Ind. M 1 2 Jan. 91 5 W 7 W
New Orders Manufacturing Ind. M 1 2 Jan. 91 5 W 7 W
Industrial Production M 1 2 Jan. 91 5 W 7 W
Nominal Exports M 1 2 Jan. 91 5 W 7 W
Global Oil Prod. barrels per day M 0 2 Jan. 91 13 W 11 W
Production Building Industry M 1 2 Jan. 91 5 W 7 W
EURIBOR M 2 1 Jan. 91 1 W 3 W
10y Gov. Bond Yield (GER) M 0 1 Jan. 91 1 W 3 W
Corporate Spread M 0 2 Jan. 91 1 W 3 W
ifo Business Expectations M 1 3 Jan. 91 1 W -
ifo Business Climate M 0 3 Jan. 91 1 W -
ifo Ass. of Orders on Hand M 1 3 Jan. 91 1 W -
ifo 3 Month Production Plans M 1 3 Jan. 91 1 W -
ifo 3 Month Export Expectation M 1 3 Jan. 91 1 W -
GfK Consumer Climate M 0 1 Jan. 91 - -
GDP (France) Q 1,3 2 Q1 91 13,5,9 W 15,7,11 W
GDP (Euro Area) Q 1,3 2 Q1 95 13,5,9 W 15,7,11 W

GDP (GER) Q 1,3 2 Q1 91 13,17,9 W 15,7,11 W

Notes: This tables gives an overview of time series used in our study. The �rst column displays the
indicator, while its frequency (Freq.) which can be either monthly (M) or quarterly (Q) is given in
the next one. Adjustments are given in the third column, denoted as Adj., such as no adjustment (0),
calender and seasonally adjusted (1), monthly average (2) and chain linked volume, rebased (3). Data
transformations (Tra.) are de�ned as 1st di�erences (1), 1st log di�erences (2) and rebased in order to
take the 1st log di�erence (3). The publication lag of each variables on forecast dates are given in the last
two columns. Due to the quarterly frequency of the GDP data the ragged-edge structure of our dataset
depends on the forecast date. Accordingly, the numbers in GDP series correspond to the ragged-edge in
�rst, second and third month of each quarter. Note that EURIBOR is replaced with monthly averages
of money market rates reported by Frankfurt banks prior to 1999.

do not always bene�t factor extraction, especially when the additional variables contain
little information about the factors (see Boivin and Ng, 2006). Conversely, so-called
targeted predictors can not only reduce the computational burden but also improve the
accuracy of forecasts obtained from di�usion indexes and factor models (see Bai and Ng,
2008).

3.2 Forecast Setup

We extend the current DMA literature and evaluate the performance of our model by
means of a pseudo-real time recursive out-of-sample forecasting exercise. Since we do not
work with historical data vintages, the e�ect of data revisions on our results will remain
unclear. Schumacher and Breitung (2008), however, show that revisions do not a�ect
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forecast accuracy considerably such that major changes should not be expected. In order
to incorporate various business cycle phases, the evaluation period expands from the �rst
quarter 2007 to the �rst quarter 2019. Following suit with common central bank practice,
we generate our forecasts at the beginning (7th) and the end of the month (27th). The
�nal two columns of Table 1 provide an overview of the ragged-edge on both forecasting
dates, where the age of information at the time the forecasts are generated is given in
weeks. Throughout the evaluation period we replicate the ragged-edge every month and
then apply the algorithms outlined in the previous sections. Starting 29 weeks before the
end of the reference quarter, each month we compute a two quarter ahead forecast, a one
quarter ahead forecast, and a nowcast to provide an assessment of the future and current
state of the economy, respectively. Since German GDP is only released 45 days after the
end of the quarter, we also compute backcasts when it is not yet available. This amounts
to one backcast in the �rst month of every quarter when forecasting on the 27th and one
backcast each during the �rst and second month of every quarter when forecasting on the
7th. Altogether, this amounts to three two quarter ahead forecasts, six one quarter ahead
forecasts, six nowcasts, and three backcasts. In total we are thus faced with 18 forecast
horizons.

To reduce the computational burden and to exclude the forecasting models where
no factors are extracted, we restrict German GDP, industrial production, ifo business
expectations, and the orders in the manufacturing industry to be contained in every
model when doing DMA/DMS. We are thus faced with 216 = 65, 536 candidate forecasting
models that span the model space.5 Generally, we compute no-change forecasts meaning
that we compute the forecasts directly conditional on the last estimate of our time-varying
parameters instead of simulating their paths. Nonetheless, the forecasts bene�t from
allowing for time-variation, which is most obvious when illustrated by means of a rather
simple example. Let us assume a time series with a single structural break or two regimes,
where one regime features a slightly positive and the other one features a slightly negative
coe�cient. When not allowing for time-varying parameters, the parameter estimate will
be a hybrid of both regimes or an average of the appropriate time-varying parameters.
A forecasting model based on an actually good predictor might thus nonetheless produce
rather poor forecasts (also see Elliott and Timmermann, 2016). In addition, in the above
example, the predictor might erroneously be identi�ed as uninformative, due to the hybrid
estimate being close to zero. Even though we �x the time-varying parameters at their
last estimate, given our selection of forecast horizons and assuming a reasonable degree
of time-variation in the parameters of the macroeconomic time series, these parameter
estimates are more appropriate than a hybrid estimate across regimes and the general
bene�t of allowing for time-varying parameters still applies. Despite we only generate
point forecasts, forecast densities arise as the densities over the individual model forecasts
of all models, where the variance can be interpreted as forecast disagreement. In addition
to DMA and DMS we will also compute the two nested cases, the simple average and
BMA, as well as the median forecast.

5 To put that into perspective, a full recursive out-of-sample exercise as the one described roughly
takes �ve days to evaluate on our computers.
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3.3 Priors & Starting Values

Our baseline TVP-MF-DFM speci�cation contains three factors, where we allow for �ve
lags in the factor equation. For our prior settings we follow Thorsrud (2018) and set
relatively informative priors for the variances and uninformative priors for the remaining
parameters,

f0 ∼ N(0, 10) (17a)

λM0 ∼ N(0, 1 · In) (17b)

λQ0 ∼ N(0, 1 · In) (17c)

β0 ∼ N(µMin, σMin) (17d)

V0 ≡ 0.1 · In (17e)

Q0 ≡ 0.1 · Ik (17f)

π0|0,j,h =
1

J
, for j = 1, . . . , J (17g)

where µMin and σMin indicate a Minnesota prior. The idea behind the Minnesota prior
is to express beliefs about the structure of the VAR for the factor state equation, where
more distant lags are penalized more strongly. We assume that the factor VAR follows a
relatively persistent AR(1) with a coe�cient of 0.9. The variance is given as σMin = 0.1/r2

for the coe�cient on lag r, which corresponds to the choice of Koop and Korobilis (2014).
In our empirical application, as a robustness check we will also estimate TVP-MF-DFM
featuring one factor and two factors, respectively, that adopt the same prior speci�cations.

What remains is the speci�cation of the decay parameters and forgetting factors. Since
to the best of our knowledge such a model has not been estimated in this framework before,
we use a relatively simple grid search to guide our choice of parameters. First, we restrict
that κM1 and κ2 as well as κ3 and κ4 change at the same rate. This seems reasonable,
because both pairs are de�ned at the same frequency and govern the parameter change of
similar components. κQ1 is allowed to change at its own rate, for reasons discussed above.
We are thus left with a three-dimensional grid, which is given in Appendix A.2. Since
we want to avoid data mining issues and a grid search over all models in M would imply
an unbearable computational demand, we evaluate the grid points only for the model
speci�cation that contains all predictors. This should result in parameter settings that
are somewhat optimal for all variables in the data set, whereas evaluating the grid for the
smallest speci�cation might result in values that are too speci�c. Given that our main
interest is in point nowcasts, we then adopt the grid point as our parameter speci�cation
that minimizes the average mean absolute deviation (MAD) over the nowcast and backcast
horizons.6 To give neither model a head-start we repeat this procedure for both ragged-
edges and the one-factor and two-factor TVP-MF-DFM, respectively. This results in the
parameter values given in Table 2. For our benchmark models without time-variation, all
κ are equal to one, which is why a grid search is not required in this case.

One can make three major observations. First, as suspected, it bene�ts the forecast
performance, if V Q and V M are allowed to feature di�erent degrees of time-variation e.g.

6 Note that the procedure is relatively robust to minimizing the RMSE instead.
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Table 2: Decay parameters and forgetting factors

Decay Parameter/Forgetting Factor: κM1 , κ2 κQ1 κ3, κ4

d7:
TVP-MF-DFM(1) 0.80 0.60 0.99
TVP-MF-DFM(2) 0.99 0.60 0.96
TVP-MF-DFM(3) 0.85 0.60 0.97

d27:
TVP-MF-DFM(1) 0.60 0.60 0.99
TVP-MF-DFM(2) 0.99 0.60 0.97
TVP-MF-DFM(3) 0.90 0.60 0.97

Notes: d7 indicates the �rst forecasting date, where forecasts are generated on the 7th of each month.
d27 indicates the second forecasting date, where forecasts are generated on the 27th of each month. The
number in parentheses indicates the number of factors, k.

to compensate for the update lag that is induced by the missing values of the quarterly
variables. Second, the grid search suggests that there is a larger degree of time-variation
in the variances than in the time-varying parameters, λt and βt, which is in line with the
�ndings of Koop and Korobilis (2014). Finally, the di�erent shape of the ragged edge on
the two forecasting dates seems to have an impact on the choice of the decay parameters
and forgetting factors. This might be attributed to the fact that we do not allow for
variable speci�c decay factors. Recalling the way the Kalman �lter deals with missing
information, we have variables that do not contribute to the estimate of the new state on
the 7th but suddenly contribute when forecasting on the 27th. In this case, these variables
have an aggravated impact on forecast performance and thus the MAD that are used to
optimize the decay parameters and forgetting factors jointly for all variables. Assuming
that the di�erent variables demand di�erent rates of parameter switching, the grid search
will then produce results that are closer to the switching rate that is more optimal for the
variables that are available conditional on the ragged-edge. This then alters the parameter
speci�cation.

The forgetting factor γ that governs the model switching rate is not evaluated on a grid
and set to the value 0.9, which implies that the forecast performance one year ago only
receives 65% of weight. We set this slightly more aggressive value than Koop and Korobilis
(2014) for two simple reasons. First, with increasing length of the forecast horizon, more
time has to pass until a forecast can be evaluated and used to update the models' weights.
Second, the publication lags of the individual variables do not only have to be taken into
account when generating the forecasts but also have to be considered when calculating the
weights. Since German GDP has a publication lag of 45 days, evaluations of the forecasts
for the preceding quarter are thus also only available with delay and not during the �rst
month of a given quarter. This additionally adds considerable update lag. A one quarter
ahead forecast that is generated during the �rst month of a given quarter will thus be
weighted with a DMA weight that was updated conditional on the forecast performance
of a one quarter ahead forecast generated three quarters ago. For the two quarter ahead
forecasts, this update lag increases accordingly. The aggressive γ speci�cation is thus
chosen to counteract these two e�ects. A sensitivity analysis is provided in Appendix
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A.3.

4 Forecasting Results

4.1 Forecast Evaluation

Table 3 displays the forecast performance of our baseline model with three factors and
time-varying parameters for all weighting schemes and forecast horizons as well as the per-
formance of the corresponding model without time-variation. In addition, we report the
forecast performance of the mean forecasts obtained from around 70 model speci�cations
of the Factor MIDAS model (F-MIDAS) developed by Marcellino and Schumacher (2010)
for a selection of forecast horizons. This rather competitive benchmark is attractive for
two main reasons. First, without the means to average over an entire model space, one
usually averages over a few model speci�cations, if at all. Usually, these model speci-
�cations are characterized by either di�erent hyperparameters or a di�erent number of
factors. Second, F-MIDAS is also a factor model that provides the means to successfully
deal with asynchronous release dates and mixed frequencies. As a second competitive
benchmark we use the MF-VAR model proposed by Schorfheide and Song (2015). This
mid-sized mixed-frequency VAR is estimated on a comparable data set and belongs to a
popular class of mixed-frequency models. These benchmarks thus share the main features
required for nowcasting with our TVP-MF-DFM. To evaluate the quality of our point
forecasts we provide the MAD and RMSE. All forecast performance measures are given
relative to the naive benchmark, which is the in-sample mean.7 The asterisks indicate
that the improvement in forecast accuracy over the benchmark is statistically signi�cant
according to the Diebold and Mariano (1995) test.8 The corresponding tables for a variant
with one and two factors, respectively, are provided in Appendix A.3.

The mean and the median forecasts with time-variation and the MF-VAR forecasts
are superior to the naive benchmark from the �rst forecast horizon onwards and remain
informative for shorter forecast horizons. It takes DMA, BMA and DMS slightly longer
and F-MIDAS the longest to stay continuously informative. Generally, the forecast per-
formance gains over the naive benchmark become increasingly large as time proceeds,
where at h = −5 BMA with time-variation features a 61% (46%) smaller RMSE (MAD).
From 21 weeks prior to the reference quarter onwards, these forecast gains are also sta-
tistically signi�cant for some forecast combinations and from h = 5 onwards they remain
statistically signi�cant for all TVP-MF-DFM variants. Comparing TVP-MF-DFM and F-
MIDAS, the TVP-MF-DFM produce relative forecast errors that are smaller than those of
F-MIDAS for most periods. Especially for the nowcast and backcast horizon, the relative
forecast errors are 10 or more percentage points smaller across all forecast combinations.
In this context, the highest relative performance gains again emerge for BMA and the last
backcast horizon, where the RMSE (MAD) is reduced by about 35% (20%). Although this
holds only true in that particular case, when pooled together the proposed speci�cations
still manage to improve the forecast accuracy of F-MIDAS by 11% (8%) on average in term

7 Since Marcellino and Schumacher (2010) already evaluate the performance of F-MIDAS against
various other benchmark models, we do not consider additional benchmarks here.

8 The stationarity of the forecast errors may be violated by the recursive estimation scheme and thus
these test results have to be considered cautiously.
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Table 3: Relative forecast performance, 3 Factors, γ = 0.9

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 1.00 0.99 0.96 0.97 0.87** 0.86** 0.88* 0.86** 0.83** 0.84** 0.87* 0.79** 0.79** 0.64** 0.64** 0.59** 0.59** 0.56***
TVP-MF-DFM Median1.00 0.98 0.96 0.98 0.87** 0.86** 0.89* 0.86** 0.83** 0.84** 0.87* 0.79** 0.79** 0.64** 0.65** 0.59** 0.59** 0.57***
TVP-MF-DFM DMS 1.01 1.09 1.06 1.04 0.94 0.95 0.93 0.96 0.94 0.90 0.91 0.87 0.81* 0.66** 0.69** 0.65* 0.60** 0.58**
TVP-MF-DFM DMA 1.01 1.03 1.00 1.05 0.91* 0.93 0.91 0.90* 0.88* 0.87* 0.88* 0.83* 0.81* 0.65** 0.66** 0.59** 0.58** 0.55**
TVP-MF-DFM BMA 1.02 1.04 1.00 1.05 0.91 0.91 0.91* 0.90* 0.89 0.87* 0.87* 0.80** 0.77** 0.63** 0.64** 0.57** 0.59** 0.54**

MF-DFM Mean 0.92* 0.92** 0.90* 0.92 0.87** 0.84***0.98 0.94 0.91 0.96 1.01 0.90 0.86 0.64** 0.63** 0.58** 0.59** 0.54***
MF-DFM Median 0.92* 0.92** 0.89* 0.92 0.87** 0.84***1.00 0.94 0.92 0.96 1.00 0.90 0.86 0.64** 0.63** 0.59** 0.59** 0.54**
MF-DFM DMS 0.98 1.01 0.96 0.98 1.00 1.01 0.87** 1.09 1.01 1.14 1.16 0.94 1.15 0.73* 0.69* 0.64* 0.67* 0.52**
MF-DFM DMA 0.95 0.97 0.90* 0.93 0.94 0.92 0.94 1.07 0.98 1.13 1.14 0.96 1.08 0.70* 0.67** 0.61** 0.63* 0.51**
MF-DFM BMA 0.94 0.90** 0.87** 0.93 0.92 0.94 0.94 1.06 0.98 1.19 1.16 0.92 1.02 0.67** 0.64** 0.69* 0.62* 0.54**

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.96 0.97 0.96 1.00 0.88* 0.88* 0.78* 0.79* 0.75* 0.75 0.78* 0.70* 0.69* 0.51* 0.51* 0.45* 0.46* 0.44*
TVP-MF-DFM Median0.96 0.97 0.96 1.00 0.88* 0.88* 0.78* 0.79* 0.75* 0.75 0.78* 0.70* 0.69* 0.51* 0.50* 0.45* 0.45* 0.43*
TVP-MF-DFM DMS 0.98 1.04 1.05 1.04 0.95 0.96 0.83 0.91 0.83 0.79 0.77 0.72 0.78* 0.53* 0.52* 0.45* 0.43* 0.40*
TVP-MF-DFM DMA 0.96 1.00 0.99 1.03 0.92* 0.94 0.81 0.82* 0.79 0.77 0.77* 0.70 0.75* 0.49* 0.51* 0.40* 0.40* 0.39*
TVP-MF-DFM BMA 0.96 1.00 0.99 1.04 0.92* 0.95 0.81 0.84* 0.80* 0.76 0.76* 0.69* 0.71* 0.47* 0.48* 0.40* 0.41* 0.39*

MF-DFM Mean 0.93** 0.94** 0.92** 0.95* 0.90** 0.89** 0.87 0.84* 0.81* 0.81 0.83 0.73 0.67 0.47* 0.46* 0.42* 0.43* 0.42*
MF-DFM Median 0.93** 0.94** 0.92** 0.95** 0.90** 0.88** 0.87 0.84* 0.81* 0.81 0.83 0.73 0.68 0.47* 0.47* 0.43* 0.43* 0.42*
MF-DFM DMS 1.01 0.95 0.92 1.03 1.02 0.96 0.85 1.05 0.91 0.95 0.88 0.79 0.97 0.50 0.48 0.42* 0.43* 0.37*
MF-DFM DMA 1.00 0.93 0.91* 1.00 0.98 0.93* 0.86 1.04 0.88 0.94 0.86 0.79 0.93 0.49* 0.48* 0.40* 0.40* 0.36*
MF-DFM BMA 1.00 0.89* 0.88* 1.02 0.94* 0.96 0.86 1.05 0.87 0.96 0.86 0.78 0.83 0.47* 0.47* 0.44* 0.40* 0.39*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: The forecast horizon h is given as the distance to the end of the reference quarter measured in weeks. Negative values indicate backcasts. The
benchmark is the in-sample mean. ***, ** and * indicate one-sided Diebold-Mariano p-values that are smaller or equal to 0.01, 0.05 and 0.1, respectively.
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of the RMSE (MAD). Compared to the MF-VAR, the same pattern generally emerges,
where our proposed model improves upon the forecast accuracy of MF-VAR by up to
43% (26%) and 8% (4%) on average. Interestingly, to a lesser extend the above also holds
true for the MF-DFM forecasts. This might indicate an advantage of our method over
F-MIDAS and MF-VAR. Unlike the former, instead of linking factors that are extracted
at monthly frequency to quarterly GDP by means of the MIDAS equations, we account
for quarterly and monthly variables and their interactions directly during the factor ex-
traction which might bene�t the forecast performance. Unlike the latter, we e�ciently
summarize the information contained in the data set in factors, instead of modelling the
dynamics across variables separately.

Comparing the TVP-MF-DFM and the MF-DFM models directly, a few interesting
features become apparent. First, we �nd that accounting for time-variation can improve
or at least does not harm forecast performance. Our �ndings are hence in line with
those of Bauwens et al. (2015) and Pettenuzzo and Timmermann (2017). Second, these
gains seem more pronounced for longer forecast horizons as well as the performance based
weighting schemes. Pettenuzzo and Timmermann (2017) �nd that TVP models improve
density forecasts more than they improve point forecasts. Given that the individual model
weights are calculated based on the predictive likelihood, which assesses the entire predic-
tive distribution, accounting for time-variation might thus also bene�t the calculation of
the individual model probabilities and thus forecasts generated with performance based
weighting schemes.

Throughout the sequence of forecasts horizons, the performance based weighting schemes
do not seem to produce forecasts that are substantially superior to those produced by ei-
ther the mean or median and thus simple model averaging schemes. This is in line with
the �ndings of Aiol�, Capistrán, and Timmermann (2010), who compare the performance
of di�erent model averaging schemes for several macroeconomic variables and forecast-
ing horizons. Nevertheless, we observe that forecasts from performance based weighting
schemes seem to be less precise relative to mean and meadian forecasts for longer horizons
but seem to produce slightly more precise forecasts as the forecast horizon decreases. In
our baseline model, this holds true for DMA and BMA and the late backcast horizons.
As discussed above, this behavior might be rooted in the update lag of the model weights
that results due to the nature of forecasting and the publication lag of German GDP. As
the forecast horizons get shorter (longer), the update lag decreases (increases) and fore-
casts from performance based weighting schemes hence become more (less) precise than
forecasts from simple weighting schemes. Additionally, one can observe that the forecast
performance of DMS is slightly more volatile over the forecast horizons. As discussed
above, DMS forecasts are generated conditional on the DMA weights, which in turn de-
pend on the decay factor γ. An optimal γ for DMA does, however, not necessarily imply
an appropriate switching rate in the context of DMS. Allowing for two separate γ, one
for DMA and one for DMS, might hence improve the performance of DMS.

Lastly, a few �nal comments are in order. Comparing the performance across the
di�erent factor speci�cations, one can observe that the performance of our model increases
in the number of factors for shorter forecast horizons, whereas the models with fewer
factors seem to even improve on the performance of the three factor model for longer term
forecasts. The performance across these model variants generally appears stable, with the
one and two factor model also improving on the forecasting accuracy of our naive as well
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as more competitive benchmarks across forecast horizons. Comparing the performance
across di�erent rates of model switching instead, one can observe that faster rates of
model switching seem to bene�t longer term forecasts, while our rather slow rate of model
switching is superior for shorter forecast horizons. This again underpins our observations
regarding the update lag. Finally, one can observe that the forecast performance of
all model speci�cations, F-MIDAS and to a smaller degree MF-VAR feature an erratic
pattern over the forecast horizons and thus forecast dates. For the nowcast and backcast
horizons, forecasts generated on the 27th seem to perform worse than forecasts generated
on the 7th, despite more data and hence information is available. This might indicate that
certain data releases alter or disrupt the factor structure to an extend where the forecast
performance su�ers. Some indicators such as surveys might have leading properties and
might thus provide more information on the subsequent than the current quarter (see
e.g. Carstensen, Heinrich, Reif, and Wolters, 2017). Including them contemporaneously
instead of with lag might then negatively impact the factor extraction and hence lead to
such an erratic pattern.

4.2 Shedding Light on the Factor Blackbox

Integrating our suggested model into dynamic model averaging framework enables us to
observe the uncertainty around point forecasts. Figure 1 illustrates estimated Kernel
densities over the model space for our baseline model for all data vintages at forecast
horizon h = −5, where the general picture is preserved for other forecast horizons.

Overall, the estimated densities are able to demonstrate forecast uncertainty reason-
ably well. For instance, in the period surrounding the Great Recession, one can see that
the variance of the forecast distribution increases which can be interpreted as increasing
forecast disagreement among models. During this period the density is almost entirely
�at, indicating that the di�erent models point in vastly di�erent directions. Moreover, a
similar pattern emerges to a lesser extend with the aggravation of the euro area sovereign
debt crisis during 2011 and 2012. In contrast, toward the end of the evaluation sample,
where the German economy was located on a relatively stable growth path, the forecast
distributions become heavily concentrated and the models point in very similar direc-
tions. On the one hand, this shows that the forecast distributions from our model pick up
changes in the economic conditions relatively quickly and react in a way that is reasonable.
On the other hand, the changes in forecast disagreement might be useful in determining
the risk that surrounds the economy at a given point in time and thus provide insightful
information to the forecasters and policy makers.

Despite the increased forecast uncertainty in turbulent times like the Great Recession,
our suggested framework is able to generate more reliable forecasts during such periods
compared to competing models. Figure 2 displays the cumulative absolute errors (CAE)
for h = −5 (the general picture is again preserved for other forecast horizons and weighting
schemes) in order to assess in which period our model generates forecast performance gains
relative to benchmark models.

Overall, Figure 2 demonstrates the superior forecast performance of both TVP-MF-
DFMmean and DMA speci�cations, as also presented in Table 3, because they accumulate
less forecast error over time. Given that the slope of the CAE for selected models (with
the naive benchmark being the exception) are relatively similar for most of the sample,
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Figure 1: Forecast densities and heatmap, h = −5
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Notes: This �gure displays the densities over the forecasts generated by the 65,536 models for h = −5 over
the estimation sample. The forecast heatmap at the bottom panel gives a two dimensional representation
of the estimated densities at the top panel.

it is the �nancial crisis that makes the di�erence in forecast performance. The highly
�exible TVP-MF-DFM is able to produce more precise forecasts during this period and
thus accumulates substantially less error. Rather than providing more precise forecasts
where forecast performance is already satisfactory, one advantage of our approach thus
seems to be that it provides more precise forecasts during periods of tension and when
the economy is on an unstable path or in a transition phase between regimes. This
approach can hence be added into the nowcasting toolbox of policy makers as a more
reliable nowcasting model in turbulent times.

After having a close look at the forecast performance of the TVP-MF-DFM-DMA we
shift our focus on the inner workings of our suggested framework. Since factor models are
based on latent and hence unobserved components, they are typically hard to interpret.
Usually, it remains unclear why a factor model behaves a certain way or, in the context
of forecasting, how forecasts are formed based on the model ingredients. The DMA
methodology allows to shed some light onto the inner workings of a factor model or
rather forecast combinations thereof. As Koop and Korobilis (2011, 2014) show, one can
use the updated individual model probabilities to calculate the expected excess model
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Figure 2: Evolution of cumulative forecast errors, h = −5
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size as well as the importance of the di�erent variables over time:

E(nt,h) =

(
J∑
j=1

πt|t,j,hnj

)
− 4 (18)

πxit,h =
∑
k⊂xi

πt|t,j,h (19)

Again we extend on the current framework by allowing both, equations (18) and (19),
to depend on the forecast horizon. As we exclude models where no factors are extracted
in our empirical exercise, we de�ne the expected model size in excess of the variables that
are always included. One can thus either interpret this statistic as the expected excess
model size or the number of additional variables DMA/BMA chooses to include when the
forecast combination is produced.

Figure 3 displays the expected excess model size for h = −5, as given in equation
(18). While the expected model consists of around 12 (4 �xed and 8 additional selected)
variables on average, there is a considerable �uctuations in the expected number of ad-
ditional variables over the evaluation period. The excess model size seems to decline in
2008, 2011, 2013 and at the end of our evaluation period. The timing of the �rst two drops
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Figure 3: Expected excess model size, h = −5
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Notes: This �gure displays the expected model size in excess of the four variables that are contained in
all models. To arrive at the total number of variables one thus has to add four.

in the model size coincides with the Great Recession and euro area sovereign debt crisis,
respectively. Moreover, the latter two corresponds to times of a rather decent slowdowns
in economic activity. Against this background, in times of high uncertainty parsimonious
model speci�cations appear to be bene�cial to the forecast performance, whereas increas-
ing number of indicators seem to improve the forecast accuracy during more tranquil
periods. Finally, throughout the evaluation period neither corner solution with either all
or no additional variables seems to prevail. This suggests that the additional variables
are able to provide information at certain points in time that is not already conveyed by
the four variables which are always included in all model speci�cations through the entire
evaluation period.

The �uctuations in expected model size point out that the number of important indi-
cators may change over time, whereas it is not able to identify such variables. Therefore
we aim at identifying predictors' probability of being included in the model or loosely
speaking importance of the additional variables through time in the �nal step. This is
visualized in the following heatmap.

Figure 4 illustrates the importance of each additional variable over the entire evaluation
period. At the beginning of the sample, exports, in�ation and the production in the
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Figure 4: Indicator heatmap, h = −5
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Notes: This �gure displays the importance of the additional variables in our data set through time.
The heatmap is row-scaled, meaning that for each variable the period where it is most (least) important
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building industry seem to contribute relatively more to the DMA forecast than later in
the sample. All other indicators receive rather balanced weights of medium magnitude.
However, this picture gets disrupted with the onset of the Great Recession. While most
variables suddenly loose most of their weights, the EURIBOR, 10y government bond yield,
foreign orders in the automotive industry and the euro area GDP experience increases in
their relative weights and thus contribution to the DMA forecast. Moreover, indicators,
such as in�ation, unemployment as well as corporate spread and sentiment indicators
appear to gain weight over the course of the euro area sovereign debt crisis. Furthermore,
unemployment, EURIBOR, 10y government bond yields, consumer sentiment and the
euro area GDP seem to be among most important indicators from 2014 onwards, whereas
this picture slightly changes towards the end of our evaluation sample. Since 2017, 10y
government bond yields and sentiment indicators, such as business climate and assessment
of orders on hand, appear to contribute more to the DMA forecast. Last but not least,
global oil production, our proxy for world-wide economic activity, and export expectations
gain on weight remarkably during this period.

Finally, a few words of caution are in order, however. Although it is tempting to
infer a causal relationship especially when the changes in model weight seem reasonable,
one must not do so. First of all, as pointed out, correlation structures between variables
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can change over time. This holds true for variables within and without the data set.
Rather than being important at a certain point in time itself a certain indicator might
receive more weight, because it proxies an actually important unobserved predictor. The
patterns that emerge might thus be spurious. Second, the weights used to produce these
statistics are generated conditional on the forgetting factor γ which governs the dynamics
of model switching. An increasingly lower γ implies faster model switching, which is likely
to produce a more erratic behavior of the excess model size and a more blurry heatmap.
In the extreme case, the simple average, the heatmap will only feature one single color as
the weights are identical throughout time and across variables. These �gures are thus to
be understood as a tool that sheds light on how a certain forecast emerges. They provide
the means to observe which and how many variables in�uenced the forecast the most
from the perspective of the model. This in turn allows the forecaster to conduct reality
checks assessing whether the model places high weights on indicators that truly seem to be
important at the time. Given the usual black-box character of factor models and forecasts
generated by their means, this provides additional transparency to the forecaster.

5 Concluding Remarks

In this paper we propose a novel TVP-MF-DFM nowcasting model that can e�ciently deal
with the characteristics of the real-time data �ow as well as parameter instability and time-
varying volatility. Moreover, we develop an algorithm optimized for fast estimation that
allows us to integrate our TVP-MF-DFMs into a dynamic model averaging framework.
This enables us to generate forecasts based on a large model space which is advisable
when faced with model uncertainty.

We put our model to the test in a pseudo real-time recursive out-of-sample forecast-
ing exercise. Our results reveal that it can realize performance gains relative to both a
naive benchmark and more competitive models of similar nature in forecasting German
GDP growth. While our proposed model performs similar to the competitive bench-
marks during rather tranquil sample periods, it improves upon the nowcasting accuracy
of the benchmark models especially during the �nancial crisis, where our model produces
more precise forecasts. Overall, the proposed model speci�cations manage to improve the
forecast accuracy of the naive benchmark by up to 61%. Compared to the competitive
benchmarks, forecast performance improves by up to 10% on average and by up to 40% in
the most favourable case, where the results generally depend on the forecast performance
measure, the model averaging method, and the forecast horizon. Furthermore, we �nd
that performance based weighting schemes su�er from update lag as the forecast horizon
and publication lag of the target variable increases, which might explain why they seem to
improve upon simple weighting schemes only for short horizons. Finally, we show how the
DMA methodology can be used to assess which variables are most in�uential for a given
forecast, which provides additional transparency to the forecaster. Providing considerable
improvements in forecast accuracy and additional transparency our suggested framework
is a useful complement to the forecasting toolbox of policy makers.

This paper also opens up new avenues for further research in the nowcasting and the
model averaging literature. Future work could, e.g., investigate the potential of allowing
not only the parameters and models to change over time, but also the decay parameters
and forgetting factors to be dynamic. Moreover, one could allow for di�erent decay rates
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for each variable and di�erent degrees of model change for each forecast horizon. Such
extensions of our framework, however, are left for further research.
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Appendix A

A.1 Kalman �lter

The objective is to update what we know about the system each time a new observation
arrives to produce estimates of the latent state variables. One can derive the Kalman �l-
ter's update and prediction equations, starting by assuming that all variables involved are
normally distributed. By the properties of the normal distribution, conditional distribu-
tions of one subset of variables conditional on another remain normally distributed. Thus,
the expressions for the respective conditional means and conditional variances, which are
known from regression theory, apply (for detailed proof, see e.g. Blake and Mumtaz, 2017;
Durbin and Koopman, 2012). Proceeding from here, one can use these results and derive
the expressions for the conditional moments of the state variables. Conditional on the ob-
servation equation, (7a), and the factor state equation, (7b), the Kalman �lter equations
are then given by,

st|t−1 = Atst−1|t−1 (20a)

Σf
t|t−1 = AtΣ

f
t−1|t−1A

′
t +Qt (20b)

ξt = xt −Htst|t−1 (20c)

Ft = HtΣ
f
t|t−1H

′
t + Vt (20d)

st|t = st|t−1 + Σf
t|t−1H

′
tF
−1
t ξt (20e)

Σf
t|t = Σf

t|t−1 − Σf
t|t−1H

′
tF
−1
t HtΣ

f
t|t−1 (20f)

where st|Data1:t−1 ∼ N(st|t−1,Σ
f
t|t−1) and st|Data1:t ∼ N(st|t,Σ

f
t|t). Equations (20a) and

(20b) are known as the prediction equations, whereas equations (20e) and (20f) represent
the update equations. From a Bayesian point of view, the Kalman �lter provides vectors
and matrices of quasi-posterior means and variances, respectively, which feature minimum
variance linear unbiased interpretations. From the standpoint of classic inference, the
Kalman �lter produces minimum variance linear unbiased estimates of the state variables.
Importantly, this holds true whether or not the variables involved are normally distributed
(see Durbin and Koopman, 2012). Although one usually assumes normality, the Kalman
�lter equations thus remain valid under more general circumstances. Finally, the equations
for the �xed interval smoother, following Rauch et al. (1965), are given by

Cf
t = Σf

t|tA
′
t|T

(
Σf
t+1|t

)−1
(21a)

st|T = st|t + Cf
t (st+1|T − st+1|t) (21b)

Σf
t|T = Σf

t|t + Cf
t (Σf

t+1|T − Σf
t+1|t)(C

f
t )′ (21c)

While the Kalman �lter considers information up to time t and proceeds forward
through time, the smoother considers the entire data series and proceeds backwards
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through time. From the perspective of a Kalman �lter iteration at time t, the smoother
thus also takes into account information that lies in the future and adjusts the Kalman
�lter output appropriately.

A.2 Grid Search

As pointed out in the main body of the paper, we use a simple grid search to guide
our choice of parameters. Since κM1 and κ2 as well as κ3 and κ4 are de�ned at the same
frequency and govern the degree of time-variation of similar components, we restrict them
to the same value. κQ1 is responsible for the parameter change of the residual variances
for the quarterly variables and allowed to take its own value. Thus our grid is three
dimensional, which eases the computational burden.

κM1 , κ2 ∈
[
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99

]
κQ1 ∈

[
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99

]
κ3, κ4 ∈

[
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

]
Given the high computational demand of our approach, we evaluate the grid for the

model containing all predictors instead of the entire model space. This should produce a
parameter speci�cation that is somewhat appropriate for all variables instead of only a
selected few.

As our parameter speci�cation we then adopt the grid point that minimizes the average
mean absolute deviation (MAD) over the nowcast and backcast horizon. Generally, to �t
the individual forecaster's needs one could also choose to minimize the average MAD over
all forecast horizons or any combination thereof. This allows to design models that are
specialized on e.g. forecasting, nowcasting and backcasting. Forecasts over the entire set
of forecast horizons then arise from di�erent models that are estimated independently. In
case of our model, however, this would triple the computational demand, which is why
we abstract from this approach.

A.3 Sensitivity Analysis

In addition to our baseline modelling framework we also evaluate various model speci�ca-
tions in order to check the sensitivity of forecast performance to di�erent factor structures
and decay parameters in dynamic model averaging. While the overall forecast performance
deteriorates with decreasing number of factors, the results seem to be less sensitive to the
forgetting factor which governs the rate of model switching. The results for various model
speci�cations are presented in Tables A.1 − A.11.
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Table A.1: Relative forecast performance, 3 Factors, γ = 0.8

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 1.00 0.99 0.96 0.97 0.87** 0.86** 0.88* 0.86** 0.83** 0.84** 0.87* 0.79** 0.79** 0.64** 0.64** 0.59** 0.59** 0.56***
TVP-MF-DFM Median1.00 0.98 0.96 0.98 0.87** 0.86** 0.89* 0.86** 0.83** 0.84** 0.87* 0.79** 0.79** 0.64** 0.65** 0.59** 0.59** 0.57***
TVP-MF-DFM DMS 1.03 1.03 1.01 1.03 0.95 0.93 0.95 0.94 0.90 0.88* 0.85* 0.84 0.81* 0.67** 0.73** 0.68* 0.59** 0.58**
TVP-MF-DFM DMA 0.99 1.01 0.98 1.03 0.89* 0.90* 0.89* 0.88* 0.86** 0.87* 0.88 0.84* 0.82* 0.65** 0.67** 0.59** 0.59** 0.55**
TVP-MF-DFM BMA 1.02 1.04 1.00 1.05 0.91 0.91 0.91* 0.90* 0.89 0.87* 0.87* 0.80** 0.77** 0.63** 0.64** 0.57** 0.59** 0.54**

MF-DFM Mean 0.92* 0.92** 0.90* 0.92 0.87** 0.84***0.98 0.94 0.91 0.96 1.01 0.90 0.86 0.64** 0.63** 0.58** 0.59** 0.54***
MF-DFM Median 0.92* 0.92** 0.89* 0.92 0.87** 0.84***1.00 0.94 0.92 0.96 1.00 0.90 0.86 0.64** 0.63** 0.59** 0.59** 0.54**
MF-DFM DMS 0.98 1.02 0.95 0.95 1.00 1.02 0.86** 1.06 0.93 1.16 1.19 0.94 1.15 0.70* 0.68** 0.59** 0.63* 0.50**
MF-DFM DMA 0.95 0.98 0.90* 0.90** 0.95 0.93 0.93 1.06 0.90 1.15 1.13 0.94 1.04 0.67** 0.65** 0.59** 0.61** 0.51**
MF-DFM BMA 0.94 0.90** 0.87** 0.93 0.92 0.94 0.94 1.06 0.98 1.19 1.16 0.92 1.02 0.67** 0.64** 0.69* 0.62* 0.54**

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.96 0.97 0.96 1.00 0.88* 0.88* 0.78* 0.79* 0.75* 0.75 0.78* 0.70* 0.69* 0.51* 0.51* 0.45* 0.46* 0.44*
TVP-MF-DFM Median0.96 0.97 0.96 1.00 0.88* 0.88* 0.78* 0.79* 0.75* 0.75 0.78* 0.70* 0.69* 0.51* 0.50* 0.45* 0.45* 0.43*
TVP-MF-DFM DMS 0.97 1.00 1.01 1.04 0.96 0.93 0.86 0.84 0.80 0.76 0.77* 0.66 0.78* 0.52* 0.60* 0.47* 0.43* 0.40*
TVP-MF-DFM DMA 0.95 0.98 0.96 1.01 0.90* 0.91 0.78* 0.80* 0.78* 0.77 0.79* 0.71 0.74* 0.51* 0.53* 0.41* 0.41* 0.39*
TVP-MF-DFM BMA 0.96 1.00 0.99 1.04 0.92* 0.95 0.81 0.84* 0.80* 0.76 0.76* 0.69* 0.71* 0.47* 0.48* 0.40* 0.41* 0.39*

MF-DFM Mean 0.93** 0.94** 0.92** 0.95* 0.90** 0.89** 0.87 0.84* 0.81* 0.81 0.83 0.73 0.67 0.47* 0.46* 0.42* 0.43* 0.42*
MF-DFM Median 0.93** 0.94** 0.92** 0.95** 0.90** 0.88** 0.87 0.84* 0.81* 0.81 0.83 0.73 0.68 0.47* 0.47* 0.43* 0.43* 0.42*
MF-DFM DMS 1.01 0.97 0.92 0.91 1.02 0.95 0.82* 1.05 0.76 0.95 0.88 0.78 0.97 0.49* 0.48* 0.40* 0.42* 0.36*
MF-DFM DMA 1.00 0.95 0.91* 0.93* 1.00 0.94 0.84 1.04 0.76 0.95 0.86 0.78 0.91 0.48* 0.48* 0.39* 0.40* 0.37*
MF-DFM BMA 1.00 0.89* 0.88* 1.02 0.94* 0.96 0.86 1.05 0.87 0.96 0.86 0.78 0.83 0.47* 0.47* 0.44* 0.40* 0.39*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: The forecast horizon h is given as the distance to the end of the reference quarter measured in weeks. Negative values indicate backcasts. The
benchmark is the in-sample mean. ***, ** and * indicate one-sided Diebold-Mariano p-values that are smaller or equal to 0.01, 0.05 and 0.1, respectively.
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Table A.2: Relative forecast performance, 3 Factors, γ = 0.7

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 1.00 0.99 0.96 0.97 0.87** 0.86** 0.88* 0.86** 0.83** 0.84** 0.87* 0.79** 0.79** 0.64** 0.64** 0.59** 0.59** 0.56***
TVP-MF-DFM Median1.00 0.98 0.96 0.98 0.87** 0.86** 0.89* 0.86** 0.83** 0.84** 0.87* 0.79** 0.79** 0.64** 0.65** 0.59** 0.59** 0.57***
TVP-MF-DFM DMS 1.02 0.98 1.00 1.04 0.98 0.93 0.91 0.93 0.91 0.89 0.84* 0.87 0.82* 0.70** 0.76* 0.68* 0.64** 0.62**
TVP-MF-DFM DMA 1.00 1.01 0.98 1.01 0.88** 0.87** 0.89* 0.87** 0.85** 0.87* 0.89 0.84* 0.83* 0.65** 0.68** 0.59** 0.58** 0.55**
TVP-MF-DFM BMA 1.02 1.04 1.00 1.05 0.91 0.91 0.91* 0.90* 0.89 0.87* 0.87* 0.80** 0.77** 0.63** 0.64** 0.57** 0.59** 0.54**

MF-DFM Mean 0.92* 0.92** 0.90* 0.92 0.87** 0.84***0.98 0.94 0.91 0.96 1.01 0.90 0.86 0.64** 0.63** 0.58** 0.59** 0.54***
MF-DFM Median 0.92* 0.92** 0.89* 0.92 0.87** 0.84***1.00 0.94 0.92 0.96 1.00 0.90 0.86 0.64** 0.63** 0.59** 0.59** 0.54**
MF-DFM DMS 0.97 1.01 0.96 0.96 0.99 0.98 0.86** 1.04 0.95 1.21 1.15 0.98 1.11 0.69* 0.68** 0.64* 0.65* 0.52**
MF-DFM DMA 0.93* 0.98 0.90* 0.89** 0.93 0.91 0.92 1.03 0.92 1.17 1.15 0.94 1.06 0.65** 0.65** 0.61** 0.62** 0.53**
MF-DFM BMA 0.94 0.90** 0.87** 0.93 0.92 0.94 0.94 1.06 0.98 1.19 1.16 0.92 1.02 0.67** 0.64** 0.69* 0.62* 0.54**

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.96 0.97 0.96 1.00 0.88* 0.88* 0.78* 0.79* 0.75* 0.75 0.78* 0.70* 0.69* 0.51* 0.51* 0.45* 0.46* 0.44*
TVP-MF-DFM Median0.96 0.97 0.96 1.00 0.88* 0.88* 0.78* 0.79* 0.75* 0.75 0.78* 0.70* 0.69* 0.51* 0.50* 0.45* 0.45* 0.43*
TVP-MF-DFM DMS 0.97 0.97 1.01 1.03 0.95 0.90 0.80 0.82 0.81 0.79 0.76 0.69 0.79* 0.54* 0.61* 0.46* 0.46* 0.42*
TVP-MF-DFM DMA 0.95 0.99 0.97 1.00 0.89* 0.89* 0.78* 0.80* 0.77* 0.78 0.80* 0.72 0.73* 0.52* 0.54* 0.41* 0.41* 0.39*
TVP-MF-DFM BMA 0.96 1.00 0.99 1.04 0.92* 0.95 0.81 0.84* 0.80* 0.76 0.76* 0.69* 0.71* 0.47* 0.48* 0.40* 0.41* 0.39*

MF-DFM Mean 0.93** 0.94** 0.92** 0.95* 0.90** 0.89** 0.87 0.84* 0.81* 0.81 0.83 0.73 0.67 0.47* 0.46* 0.42* 0.43* 0.42*
MF-DFM Median 0.93** 0.94** 0.92** 0.95** 0.90** 0.88** 0.87 0.84* 0.81* 0.81 0.83 0.73 0.68 0.47* 0.47* 0.43* 0.43* 0.42*
MF-DFM DMS 1.00 0.97 0.94 0.92 0.96 0.94 0.82* 0.94 0.81 0.96 0.87 0.79 0.93 0.50 0.51* 0.43* 0.44 0.37*
MF-DFM DMA 0.99 0.95 0.92* 0.92* 0.93 0.92 0.83 0.90 0.75 0.95 0.86 0.78 0.89 0.47* 0.49* 0.42* 0.42* 0.38*
MF-DFM BMA 1.00 0.89* 0.88* 1.02 0.94* 0.96 0.86 1.05 0.87 0.96 0.86 0.78 0.83 0.47* 0.47* 0.44* 0.40* 0.39*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.3: Relative forecast performance, 3 Factors, γ = 0.6

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 1.00 0.99 0.96 0.97 0.87** 0.86** 0.88* 0.86** 0.83** 0.84** 0.87* 0.79** 0.79** 0.64** 0.64** 0.59** 0.59** 0.56***
TVP-MF-DFM Median1.00 0.98 0.96 0.98 0.87** 0.86** 0.89* 0.86** 0.83** 0.84** 0.87* 0.79** 0.79** 0.64** 0.65** 0.59** 0.59** 0.57***
TVP-MF-DFM DMS 1.03 1.03 0.96 1.05 1.00 0.92 0.91 0.91 0.88* 0.94 0.86* 0.89 0.89 0.66** 0.77* 0.70* 0.63** 0.63**
TVP-MF-DFM DMA 1.00 1.02 0.98 1.00 0.87** 0.87** 0.90* 0.87** 0.85** 0.87* 0.89 0.84* 0.84* 0.66** 0.68** 0.58** 0.58** 0.55**
TVP-MF-DFM BMA 1.02 1.04 1.00 1.05 0.91 0.91 0.91* 0.90* 0.89 0.87* 0.87* 0.80** 0.77** 0.63** 0.64** 0.57** 0.59** 0.54**

MF-DFM Mean 0.92* 0.92** 0.90* 0.92 0.87** 0.84***0.98 0.94 0.91 0.96 1.01 0.90 0.86 0.64** 0.63** 0.58** 0.59** 0.54***
MF-DFM Median 0.92* 0.92** 0.89* 0.92 0.87** 0.84***1.00 0.94 0.92 0.96 1.00 0.90 0.86 0.64** 0.63** 0.59** 0.59** 0.54**
MF-DFM DMS 0.98 1.02 0.92** 1.00 0.99 0.99 0.84** 1.09 0.94 1.27 1.21 0.94 1.18 0.72* 0.72* 0.66* 0.64* 0.54**
MF-DFM DMA 0.94 0.98 0.89** 0.93 0.93 0.91 0.91 1.02 0.90 1.18 1.14 0.94 1.07 0.66* 0.66** 0.61** 0.61** 0.54**
MF-DFM BMA 0.94 0.90** 0.87** 0.93 0.92 0.94 0.94 1.06 0.98 1.19 1.16 0.92 1.02 0.67** 0.64** 0.69* 0.62* 0.54**

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.96 0.97 0.96 1.00 0.88* 0.88* 0.78* 0.79* 0.75* 0.75 0.78* 0.70* 0.69* 0.51* 0.51* 0.45* 0.46* 0.44*
TVP-MF-DFM Median0.96 0.97 0.96 1.00 0.88* 0.88* 0.78* 0.79* 0.75* 0.75 0.78* 0.70* 0.69* 0.51* 0.50* 0.45* 0.45* 0.43*
TVP-MF-DFM DMS 0.96 1.02 0.99 1.03 0.99 0.89 0.83* 0.82 0.77 0.81 0.82 0.75 0.81* 0.52* 0.63* 0.48 0.45* 0.42*
TVP-MF-DFM DMA 0.96 1.00 0.97 1.00 0.88* 0.88* 0.78* 0.80* 0.77* 0.78 0.80* 0.72 0.73* 0.52* 0.54* 0.41* 0.41* 0.39*
TVP-MF-DFM BMA 0.96 1.00 0.99 1.04 0.92* 0.95 0.81 0.84* 0.80* 0.76 0.76* 0.69* 0.71* 0.47* 0.48* 0.40* 0.41* 0.39*

MF-DFM Mean 0.93** 0.94** 0.92** 0.95* 0.90** 0.89** 0.87 0.84* 0.81* 0.81 0.83 0.73 0.67 0.47* 0.46* 0.42* 0.43* 0.42*
MF-DFM Median 0.93** 0.94** 0.92** 0.95** 0.90** 0.88** 0.87 0.84* 0.81* 0.81 0.83 0.73 0.68 0.47* 0.47* 0.43* 0.43* 0.42*
MF-DFM DMS 1.00 0.97 0.91* 0.97 0.96 0.95 0.82* 0.95 0.80 0.99 0.92 0.78 0.96 0.52 0.54 0.45 0.43* 0.39*
MF-DFM DMA 0.99 0.96 0.91* 0.95 0.93 0.92 0.84 0.91 0.74 0.95 0.83 0.77 0.90 0.47* 0.50* 0.42* 0.41* 0.40*
MF-DFM BMA 1.00 0.89* 0.88* 1.02 0.94* 0.96 0.86 1.05 0.87 0.96 0.86 0.78 0.83 0.47* 0.47* 0.44* 0.40* 0.39*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.4: Relative forecast performance, 2 Factors, γ = 0.9

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 1.01 1.01 0.97 0.97 0.87** 0.84***0.93 0.84** 0.84* 0.84** 0.86* 0.79** 0.80* 0.71** 0.70** 0.68** 0.69** 0.67**
TVP-MF-DFM Median1.01 1.00 0.97 0.96 0.87** 0.84***0.93 0.85** 0.84* 0.84** 0.86* 0.79** 0.80* 0.72** 0.71** 0.70** 0.71** 0.68**
TVP-MF-DFM DMS 1.00 0.97 0.92 0.95 0.96 0.85***0.87* 0.83** 0.87 0.92 0.89 0.78** 0.95 0.80 0.85 0.69* 0.68* 0.68*
TVP-MF-DFM DMA 0.98 0.99 0.93 0.91* 0.87** 0.85***0.90 0.86** 0.89 0.90 0.86* 0.79** 0.87 0.73** 0.74** 0.66* 0.66* 0.67**
TVP-MF-DFM BMA 1.00 0.97 0.98 0.93* 0.88** 0.83***0.94 0.83** 0.86* 0.92 0.85* 0.77** 0.86 0.76* 0.75* 0.64* 0.67* 0.66**

MF-DFM Mean 0.91* 0.92* 0.90* 0.92 0.89** 0.85***0.98 0.92 0.90 0.92 0.94 0.85 0.83* 0.70** 0.68** 0.68** 0.69** 0.66**
MF-DFM Median 0.91* 0.92** 0.89* 0.92 0.89** 0.85***0.99 0.92 0.90 0.92 0.94 0.85 0.83* 0.71** 0.70** 0.70** 0.70** 0.67**
MF-DFM DMS 0.95 1.09 1.05 0.98 1.07 1.04 1.00 1.00 0.99 1.03 1.02 0.86 0.97 0.61** 0.61** 0.61** 0.58** 0.63***
MF-DFM DMA 0.93 1.00 0.94 0.91* 1.00 0.94 1.01 0.99 0.98 1.00 1.05 0.83* 0.99 0.60** 0.60** 0.59** 0.59** 0.63***
MF-DFM BMA 0.93 0.97 0.93 0.91* 0.99 0.92 1.02 0.98 1.07 1.02 1.01 0.84* 1.06 0.66* 0.61** 0.56** 0.56** 0.60***

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.97 0.98 0.97 0.97 0.88* 0.83* 0.78 0.75* 0.71* 0.76* 0.76* 0.72* 0.68* 0.60* 0.59* 0.58* 0.58* 0.56*
TVP-MF-DFM Median0.97 0.98 0.97 0.97 0.87* 0.83* 0.77 0.75* 0.71 0.76* 0.75* 0.71* 0.67* 0.61* 0.60* 0.59* 0.59* 0.56*
TVP-MF-DFM DMS 0.99 0.97 0.93 0.96 0.95 0.86* 0.73 0.76* 0.70 0.78 0.78* 0.72* 0.90* 0.59 0.66 0.48 0.47 0.47*
TVP-MF-DFM DMA 0.95 0.97 0.93 0.94** 0.85* 0.85* 0.75 0.76 0.75 0.78 0.73* 0.71* 0.78* 0.58* 0.58* 0.45* 0.46* 0.49*
TVP-MF-DFM BMA 0.96 0.96 0.95 0.95** 0.86* 0.84** 0.75 0.73 0.72 0.77 0.74* 0.70* 0.74* 0.57* 0.60* 0.44* 0.45* 0.48*

MF-DFM Mean 0.93** 0.94** 0.92* 0.95* 0.90** 0.88** 0.84 0.80 0.74 0.76 0.77 0.72* 0.68* 0.58* 0.57* 0.56* 0.56* 0.55*
MF-DFM Median 0.93** 0.94** 0.92* 0.95* 0.89** 0.87** 0.84 0.81 0.73 0.76 0.78 0.72* 0.68* 0.59* 0.58* 0.58* 0.58* 0.56*
MF-DFM DMS 0.98 1.01 0.99 0.98 1.01 0.97 0.92 0.86 0.76 0.80 0.76 0.74 0.82 0.45* 0.44* 0.42* 0.41* 0.54*
MF-DFM DMA 0.98 0.98 0.95 0.97 0.99 0.93 0.91 0.86 0.74 0.80 0.77 0.71 0.83 0.44* 0.44* 0.41* 0.41* 0.53*
MF-DFM BMA 1.01 0.95 0.95 0.97 0.98 0.91* 0.91 0.82 0.86 0.80 0.79 0.72 0.92 0.47* 0.44* 0.41* 0.41* 0.48*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.5: Relative forecast performance, 2 Factors, γ = 0.8

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 1.01 1.01 0.97 0.97 0.87** 0.84***0.93 0.84** 0.84* 0.84** 0.86* 0.79** 0.80* 0.71** 0.70** 0.68** 0.69** 0.67**
TVP-MF-DFM Median1.01 1.00 0.97 0.96 0.87** 0.84***0.93 0.85** 0.84* 0.84** 0.86* 0.79** 0.80* 0.72** 0.71** 0.70** 0.71** 0.68**
TVP-MF-DFM DMS 0.97 1.00 0.92 0.95 0.94 0.86***0.91 0.87** 0.98 0.94 0.88 0.78** 0.94 0.78* 0.83 0.67* 0.67* 0.68**
TVP-MF-DFM DMA 0.97 1.00 0.94 0.92* 0.89** 0.83***0.91 0.88* 0.90 0.91 0.88 0.80** 0.88 0.73** 0.74** 0.67* 0.67** 0.68**
TVP-MF-DFM BMA 1.00 0.97 0.98 0.93* 0.88** 0.83***0.94 0.83** 0.86* 0.92 0.85* 0.77** 0.86 0.76* 0.75* 0.64* 0.67* 0.66**

MF-DFM Mean 0.91* 0.92* 0.90* 0.92 0.89** 0.85***0.98 0.92 0.90 0.92 0.94 0.85 0.83* 0.70** 0.68** 0.68** 0.69** 0.66**
MF-DFM Median 0.91* 0.92** 0.89* 0.92 0.89** 0.85***0.99 0.92 0.90 0.92 0.94 0.85 0.83* 0.71** 0.70** 0.70** 0.70** 0.67**
MF-DFM DMS 0.96 1.08 1.04 0.98 1.05 1.04 0.98 0.99 0.98 1.05 1.10 0.88 1.02 0.61** 0.65** 0.57** 0.59** 0.64**
MF-DFM DMA 0.93 0.99 0.93 0.91* 0.98 0.93 0.99 0.99 0.95 1.03 1.06 0.86 1.01 0.60** 0.62** 0.58** 0.60** 0.65**
MF-DFM BMA 0.93 0.97 0.93 0.91* 0.99 0.92 1.02 0.98 1.07 1.02 1.01 0.84* 1.06 0.66* 0.61** 0.56** 0.56** 0.60***

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.97 0.98 0.97 0.97 0.88* 0.83* 0.78 0.75* 0.71* 0.76* 0.76* 0.72* 0.68* 0.60* 0.59* 0.58* 0.58* 0.56*
TVP-MF-DFM Median0.97 0.98 0.97 0.97 0.87* 0.83* 0.77 0.75* 0.71 0.76* 0.75* 0.71* 0.67* 0.61* 0.60* 0.59* 0.59* 0.56*
TVP-MF-DFM DMS 0.95 0.98 0.92 0.97 0.93 0.85* 0.76 0.82* 0.84 0.83 0.75 0.70* 0.89** 0.64* 0.65 0.47 0.47 0.49*
TVP-MF-DFM DMA 0.95 0.98 0.94 0.94** 0.86* 0.83* 0.78 0.77 0.76 0.80 0.74 0.72* 0.80* 0.60* 0.59* 0.47* 0.47* 0.51*
TVP-MF-DFM BMA 0.96 0.96 0.95 0.95** 0.86* 0.84** 0.75 0.73 0.72 0.77 0.74* 0.70* 0.74* 0.57* 0.60* 0.44* 0.45* 0.48*

MF-DFM Mean 0.93** 0.94** 0.92* 0.95* 0.90** 0.88** 0.84 0.80 0.74 0.76 0.77 0.72* 0.68* 0.58* 0.57* 0.56* 0.56* 0.55*
MF-DFM Median 0.93** 0.94** 0.92* 0.95* 0.89** 0.87** 0.84 0.81 0.73 0.76 0.78 0.72* 0.68* 0.59* 0.58* 0.58* 0.58* 0.56*
MF-DFM DMS 1.02 1.00 0.99 0.98 0.98 0.98 0.87 0.88 0.74 0.81 0.82 0.70 0.92 0.45* 0.46* 0.41* 0.42* 0.49*
MF-DFM DMA 1.01 0.97 0.95 0.97 0.97 0.93 0.87 0.86 0.73 0.82 0.80 0.70 0.89 0.44* 0.44* 0.41* 0.41* 0.49*
MF-DFM BMA 1.01 0.95 0.95 0.97 0.98 0.91* 0.91 0.82 0.86 0.80 0.79 0.72 0.92 0.47* 0.44* 0.41* 0.41* 0.48*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.6: Relative forecast performance, 2 Factors, γ = 0.7

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 1.01 1.01 0.97 0.97 0.87** 0.84***0.93 0.84** 0.84* 0.84** 0.86* 0.79** 0.80* 0.71** 0.70** 0.68** 0.69** 0.67**
TVP-MF-DFM Median1.01 1.00 0.97 0.96 0.87** 0.84***0.93 0.85** 0.84* 0.84** 0.86* 0.79** 0.80* 0.72** 0.71** 0.70** 0.71** 0.68**
TVP-MF-DFM DMS 1.01 1.06 0.97 0.99 0.93 0.89** 0.90 0.89* 0.93 0.95 0.89 0.77** 0.95 0.81* 0.80* 0.67* 0.69* 0.71*
TVP-MF-DFM DMA 0.98 1.01 0.98 0.93* 0.88** 0.84***0.92 0.89* 0.90 0.92 0.89 0.81* 0.88 0.75** 0.74** 0.68* 0.68** 0.69**
TVP-MF-DFM BMA 1.00 0.97 0.98 0.93* 0.88** 0.83***0.94 0.83** 0.86* 0.92 0.85* 0.77** 0.86 0.76* 0.75* 0.64* 0.67* 0.66**

MF-DFM Mean 0.91* 0.92* 0.90* 0.92 0.89** 0.85***0.98 0.92 0.90 0.92 0.94 0.85 0.83* 0.70** 0.68** 0.68** 0.69** 0.66**
MF-DFM Median 0.91* 0.92** 0.89* 0.92 0.89** 0.85***0.99 0.92 0.90 0.92 0.94 0.85 0.83* 0.71** 0.70** 0.70** 0.70** 0.67**
MF-DFM DMS 0.95 1.08 1.04 0.98 1.05 1.02 0.97 0.98 0.99 1.06 1.12 0.92 1.06 0.68* 0.68* 0.64** 0.66** 0.66**
MF-DFM DMA 0.93* 0.99 0.93 0.91* 0.99 0.94 0.99 1.00 0.96 1.03 1.11 0.89 0.98 0.63** 0.65** 0.63** 0.62** 0.66**
MF-DFM BMA 0.93 0.97 0.93 0.91* 0.99 0.92 1.02 0.98 1.07 1.02 1.01 0.84* 1.06 0.66* 0.61** 0.56** 0.56** 0.60***

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.97 0.98 0.97 0.97 0.88* 0.83* 0.78 0.75* 0.71* 0.76* 0.76* 0.72* 0.68* 0.60* 0.59* 0.58* 0.58* 0.56*
TVP-MF-DFM Median0.97 0.98 0.97 0.97 0.87* 0.83* 0.77 0.75* 0.71 0.76* 0.75* 0.71* 0.67* 0.61* 0.60* 0.59* 0.59* 0.56*
TVP-MF-DFM DMS 0.97 1.01 0.94 0.99 0.92* 0.89* 0.76 0.80 0.77 0.86 0.75 0.71* 0.90* 0.65 0.64* 0.47 0.48 0.50
TVP-MF-DFM DMA 0.95 0.98 0.96 0.95** 0.88** 0.83* 0.80 0.78 0.77 0.82 0.76 0.72* 0.79* 0.61* 0.59* 0.49* 0.49* 0.53*
TVP-MF-DFM BMA 0.96 0.96 0.95 0.95** 0.86* 0.84** 0.75 0.73 0.72 0.77 0.74* 0.70* 0.74* 0.57* 0.60* 0.44* 0.45* 0.48*

MF-DFM Mean 0.93** 0.94** 0.92* 0.95* 0.90** 0.88** 0.84 0.80 0.74 0.76 0.77 0.72* 0.68* 0.58* 0.57* 0.56* 0.56* 0.55*
MF-DFM Median 0.93** 0.94** 0.92* 0.95* 0.89** 0.87** 0.84 0.81 0.73 0.76 0.78 0.72* 0.68* 0.59* 0.58* 0.58* 0.58* 0.56*
MF-DFM DMS 1.02 1.00 0.98 0.99 0.98 0.98 0.90 0.85 0.74 0.82 0.86 0.71 1.03 0.48* 0.47* 0.43* 0.45* 0.50*
MF-DFM DMA 1.00 0.97 0.95 0.97 0.98 0.94 0.88 0.87 0.74 0.84 0.88 0.72 0.91 0.45* 0.45* 0.42* 0.42* 0.51*
MF-DFM BMA 1.01 0.95 0.95 0.97 0.98 0.91* 0.91 0.82 0.86 0.80 0.79 0.72 0.92 0.47* 0.44* 0.41* 0.41* 0.48*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.7: Relative forecast performance, 2 Factors, γ = 0.6

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 1.01 1.01 0.97 0.97 0.87** 0.84***0.93 0.84** 0.84* 0.84** 0.86* 0.79** 0.80* 0.71** 0.70** 0.68** 0.69** 0.67**
TVP-MF-DFM Median1.01 1.00 0.97 0.96 0.87** 0.84***0.93 0.85** 0.84* 0.84** 0.86* 0.79** 0.80* 0.72** 0.71** 0.70** 0.71** 0.68**
TVP-MF-DFM DMS 1.02 1.05 1.03 0.97 0.95 0.98 0.94 0.86* 0.93 0.94 0.92 0.83* 0.94 0.83 0.83 0.68* 0.72* 0.72*
TVP-MF-DFM DMA 0.98 1.02 1.00 0.95* 0.88** 0.85***0.92 0.89* 0.89 0.92 0.90 0.81* 0.87 0.74** 0.74** 0.68** 0.68** 0.69**
TVP-MF-DFM BMA 1.00 0.97 0.98 0.93* 0.88** 0.83***0.94 0.83** 0.86* 0.92 0.85* 0.77** 0.86 0.76* 0.75* 0.64* 0.67* 0.66**

MF-DFM Mean 0.91* 0.92* 0.90* 0.92 0.89** 0.85***0.98 0.92 0.90 0.92 0.94 0.85 0.83* 0.70** 0.68** 0.68** 0.69** 0.66**
MF-DFM Median 0.91* 0.92** 0.89* 0.92 0.89** 0.85***0.99 0.92 0.90 0.92 0.94 0.85 0.83* 0.71** 0.70** 0.70** 0.70** 0.67**
MF-DFM DMS 0.94* 1.07 1.04 0.98 1.04 1.02 0.97 1.06 0.96 1.12 1.14 0.91 1.10 0.73* 0.69* 0.64** 0.66* 0.67**
MF-DFM DMA 0.92* 0.98 0.93 0.91 0.98 0.95 0.98 1.02 1.01 1.06 1.10 0.91 0.99 0.67* 0.68* 0.63** 0.64** 0.67**
MF-DFM BMA 0.93 0.97 0.93 0.91* 0.99 0.92 1.02 0.98 1.07 1.02 1.01 0.84* 1.06 0.66* 0.61** 0.56** 0.56** 0.60***

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.97 0.98 0.97 0.97 0.88* 0.83* 0.78 0.75* 0.71* 0.76* 0.76* 0.72* 0.68* 0.60* 0.59* 0.58* 0.58* 0.56*
TVP-MF-DFM Median0.97 0.98 0.97 0.97 0.87* 0.83* 0.77 0.75* 0.71 0.76* 0.75* 0.71* 0.67* 0.61* 0.60* 0.59* 0.59* 0.56*
TVP-MF-DFM DMS 0.99 1.02 0.98 0.96 0.93* 0.95 0.81 0.74 0.77 0.84 0.80 0.75* 0.89** 0.67 0.66 0.47 0.50 0.51
TVP-MF-DFM DMA 0.95 0.99 0.97 0.96* 0.89** 0.84* 0.80 0.78 0.77 0.83 0.77 0.73* 0.79* 0.61* 0.59* 0.50* 0.50* 0.53*
TVP-MF-DFM BMA 0.96 0.96 0.95 0.95** 0.86* 0.84** 0.75 0.73 0.72 0.77 0.74* 0.70* 0.74* 0.57* 0.60* 0.44* 0.45* 0.48*

MF-DFM Mean 0.93** 0.94** 0.92* 0.95* 0.90** 0.88** 0.84 0.80 0.74 0.76 0.77 0.72* 0.68* 0.58* 0.57* 0.56* 0.56* 0.55*
MF-DFM Median 0.93** 0.94** 0.92* 0.95* 0.89** 0.87** 0.84 0.81 0.73 0.76 0.78 0.72* 0.68* 0.59* 0.58* 0.58* 0.58* 0.56*
MF-DFM DMS 0.98 0.99 0.99 0.99 0.98 0.97 0.89 0.89 0.73 0.89 0.86 0.71 1.04 0.51 0.47 0.44* 0.44* 0.51*
MF-DFM DMA 0.98 0.96 0.95 0.97 0.98 0.97 0.88 0.87 0.77 0.88 0.87 0.74 0.91 0.47* 0.47* 0.43* 0.43* 0.52*
MF-DFM BMA 1.01 0.95 0.95 0.97 0.98 0.91* 0.91 0.82 0.86 0.8 0.79 0.72 0.92 0.47* 0.44* 0.41* 0.41* 0.48*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.8: Relative forecast performance, 1 Factors, γ = 0.9

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 0.94** 0.94 0.93** 0.93 0.87***0.83***0.83** 0.83** 0.82** 0.81** 0.82* 0.77** 0.78** 0.70** 0.70** 0.69** 0.69** 0.68**
TVP-MF-DFM Median0.94** 0.94 0.93* 0.93 0.87***0.83***0.84** 0.84** 0.82** 0.82** 0.82* 0.78** 0.79* 0.71** 0.70** 0.70** 0.70** 0.69**
TVP-MF-DFM DMS 0.96***0.97 0.94***0.95** 0.98 0.91** 0.88* 0.86** 0.93 0.95 0.92 0.84 0.88 0.80* 0.81 0.78 0.76 0.75*
TVP-MF-DFM DMA 0.96***0.98 0.96** 0.97 0.92** 0.90** 0.88* 0.86* 0.89 0.87 0.88 0.83* 0.88 0.76* 0.76* 0.74* 0.74* 0.73**
TVP-MF-DFM BMA 0.97** 0.99 0.98 0.99 0.92** 0.90** 0.90 0.89* 0.88* 0.87 0.85* 0.81* 0.84* 0.77* 0.76* 0.72* 0.71** 0.74*

MF-DFM Mean 0.90** 0.91** 0.89* 0.92 0.85** 0.83***1.01 0.92 1.00 0.94 1.00 0.91 0.94 0.78* 0.79* 0.79* 0.79* 0.76*
MF-DFM Median 0.90** 0.91** 0.89* 0.92* 0.84** 0.83***1.01 0.93 0.98 0.93 0.99 0.91 0.94 0.80* 0.80 0.80* 0.80* 0.77*
MF-DFM DMS 0.91** 1.02 1.02 0.99 1.00 1.03 1.17 1.09 1.08 1.07 1.24 0.88 1.14 0.81* 0.77 0.69** 0.67** 0.67**
MF-DFM DMA 0.87***0.94 0.92 0.93 0.97 1.02 1.16 1.05 1.09 1.06 1.02 0.89 0.93 0.79* 0.74* 0.68** 0.68** 0.66**
MF-DFM BMA 0.92 0.96 0.96 0.93 1.01 1.07 1.15 1.03 1.18 1.09 1.01 0.91 0.95 0.79* 0.70* 0.70** 0.70** 0.68**

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.95** 0.95* 0.94** 0.95* 0.90** 0.86** 0.81* 0.77* 0.75* 0.72 0.77* 0.70* 0.72* 0.64* 0.65* 0.62* 0.63* 0.60*
TVP-MF-DFM Median0.95** 0.95* 0.94** 0.95* 0.89** 0.85** 0.81* 0.76* 0.74 0.71 0.76* 0.69* 0.72* 0.64* 0.65* 0.62* 0.63* 0.60*
TVP-MF-DFM DMS 0.96* 0.96* 0.95* 0.95* 0.96 0.90* 0.77 0.76 0.86 0.82 0.80 0.71 0.81* 0.66 0.65 0.65 0.60 0.62*
TVP-MF-DFM DMA 0.96* 0.96 0.95* 0.95* 0.90* 0.88* 0.78 0.75 0.76 0.74 0.77 0.71 0.78 0.65* 0.66* 0.61* 0.61* 0.63*
TVP-MF-DFM BMA 0.96 0.97 0.96 0.96 0.91* 0.89* 0.80 0.76 0.77 0.74 0.76 0.69* 0.76* 0.64* 0.64* 0.59* 0.59* 0.62*

MF-DFM Mean 0.92** 0.94** 0.92** 0.95** 0.85* 0.85** 0.81 0.80 0.78 0.77 0.85 0.78 0.81 0.69* 0.69* 0.67* 0.67* 0.66*
MF-DFM Median 0.93** 0.94** 0.92** 0.95** 0.85* 0.85** 0.81 0.80 0.77 0.77 0.84 0.78 0.81 0.70* 0.70* 0.68* 0.68* 0.66*
MF-DFM DMS 0.95** 1.00 0.96 0.96 0.84 0.97 1.11 0.89 0.95 0.87 1.00 0.77 0.95 0.71* 0.57 0.57* 0.56* 0.58*
MF-DFM DMA 0.94** 0.98 0.94 0.95 0.84 0.96 1.11 0.88 0.97 0.86 0.84 0.78 0.81 0.68* 0.57* 0.56* 0.56* 0.58*
MF-DFM BMA 0.97 1.00 1.00 0.95 0.84 0.98 1.12 0.83 1.00 0.88 0.82 0.77 0.84 0.69* 0.54* 0.57* 0.57* 0.59*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.9: Relative forecast performance, 1 Factors, γ = 0.8

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 0.94** 0.94 0.93** 0.93 0.87***0.83***0.83** 0.83** 0.82** 0.81** 0.82* 0.77** 0.78** 0.70** 0.70** 0.69** 0.69** 0.68**
TVP-MF-DFM Median0.94** 0.94 0.93* 0.93 0.87***0.83***0.84** 0.84** 0.82** 0.82** 0.82* 0.78** 0.79* 0.71** 0.70** 0.70** 0.70** 0.69**
TVP-MF-DFM DMS 0.93***0.94***0.92***0.95* 0.93** 0.90***0.91 0.89* 0.93 0.95 0.97 0.88 0.99 0.84 0.84 0.76 0.78 0.75*
TVP-MF-DFM DMA 0.95***0.96* 0.95** 0.96 0.90***0.89***0.89* 0.85** 0.88 0.86 0.89 0.83* 0.92 0.78* 0.78* 0.74* 0.75* 0.73*
TVP-MF-DFM BMA 0.97** 0.99 0.98 0.99 0.92** 0.90** 0.90 0.89* 0.88* 0.87 0.85* 0.81* 0.84* 0.77* 0.76* 0.72* 0.71** 0.74*

MF-DFM Mean 0.90** 0.91** 0.89* 0.92 0.85** 0.83***1.01 0.92 1.00 0.94 1.00 0.91 0.94 0.78* 0.79* 0.79* 0.79* 0.76*
MF-DFM Median 0.90** 0.91** 0.89* 0.92* 0.84** 0.83***1.01 0.93 0.98 0.93 0.99 0.91 0.94 0.80* 0.80 0.80* 0.80* 0.77*
MF-DFM DMS 0.91** 1.02 1.02 1.00 1.01 1.07 1.19 1.09 1.14 1.06 1.25 0.87 1.19 0.76** 0.80 0.68** 0.67** 0.66**
MF-DFM DMA 0.86***0.94 0.91 0.93 0.98 1.03 1.17 1.07 1.09 1.06 1.03 0.87 0.95 0.77* 0.75* 0.67** 0.67** 0.67**
MF-DFM BMA 0.92 0.96 0.96 0.93 1.01 1.07 1.15 1.03 1.18 1.09 1.01 0.91 0.95 0.79* 0.70* 0.70** 0.70** 0.68**

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.95** 0.95* 0.94** 0.95* 0.90** 0.86** 0.81* 0.77* 0.75* 0.72 0.77* 0.70* 0.72* 0.64* 0.65* 0.62* 0.63* 0.60*
TVP-MF-DFM Median0.95** 0.95* 0.94** 0.95* 0.89** 0.85** 0.81* 0.76* 0.74 0.71 0.76* 0.69* 0.72* 0.64* 0.65* 0.62* 0.63* 0.60*
TVP-MF-DFM DMS 0.98***0.98** 0.98***0.96* 0.95* 0.92* 0.77 0.77 0.78 0.81 0.83 0.76 0.86 0.70 0.70 0.61 0.60 0.61*
TVP-MF-DFM DMA 0.96* 0.96* 0.95* 0.95* 0.90* 0.87* 0.79 0.75 0.76 0.74 0.78 0.72* 0.82 0.66* 0.67* 0.62* 0.63* 0.64*
TVP-MF-DFM BMA 0.96 0.97 0.96 0.96 0.91* 0.89* 0.80 0.76 0.77 0.74 0.76 0.69* 0.76* 0.64* 0.64* 0.59* 0.59* 0.62*

MF-DFM Mean 0.92** 0.94** 0.92** 0.95** 0.85* 0.85** 0.81 0.80 0.78 0.77 0.85 0.78 0.81 0.69* 0.69* 0.67* 0.67* 0.66*
MF-DFM Median 0.93** 0.94** 0.92** 0.95** 0.85* 0.85** 0.81 0.80 0.77 0.77 0.84 0.78 0.81 0.70* 0.70* 0.68* 0.68* 0.66*
MF-DFM DMS 0.96** 1.00 0.96 0.97 0.85 0.98 1.11 0.88 0.98 0.85 1.01 0.75* 1.05 0.70* 0.60 0.58* 0.57* 0.58*
MF-DFM DMA 0.94***0.97 0.93 0.95 0.84 0.97 1.09 0.88 0.98 0.85 0.85 0.76* 0.85 0.65* 0.58 0.57* 0.58* 0.59*
MF-DFM BMA 0.97 1.00 1.00 0.95 0.84 0.98 1.12 0.83 1.00 0.88 0.82 0.77 0.84 0.69* 0.54* 0.57* 0.57* 0.59*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.10: Relative forecast performance, 1 Factors, γ = 0.7

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 0.94** 0.94 0.93** 0.93 0.87***0.83***0.83** 0.83** 0.82** 0.81** 0.82* 0.77** 0.78** 0.70** 0.70** 0.69** 0.69** 0.68**
TVP-MF-DFM Median0.94** 0.94 0.93* 0.93 0.87***0.83***0.84** 0.84** 0.82** 0.82** 0.82* 0.78** 0.79* 0.71** 0.70** 0.70** 0.70** 0.69**
TVP-MF-DFM DMS 0.95***0.95** 0.94***0.97 0.95** 0.90***0.92 0.88* 0.91 0.92 0.93 0.90 0.97 0.85 0.86 0.77 0.79 0.75*
TVP-MF-DFM DMA 0.95***0.96* 0.95***0.96 0.89***0.88***0.88* 0.85** 0.89 0.86* 0.88 0.82* 0.90 0.77* 0.77* 0.74* 0.74* 0.74*
TVP-MF-DFM BMA 0.97** 0.99 0.98 0.99 0.92** 0.90** 0.90 0.89* 0.88* 0.87 0.85* 0.81* 0.84* 0.77* 0.76* 0.72* 0.71** 0.74*

MF-DFM Mean 0.90** 0.91** 0.89* 0.92 0.85** 0.83***1.01 0.92 1.00 0.94 1.00 0.91 0.94 0.78* 0.79* 0.79* 0.79* 0.76*
MF-DFM Median 0.90** 0.91** 0.89* 0.92* 0.84** 0.83***1.01 0.93 0.98 0.93 0.99 0.91 0.94 0.80* 0.80 0.80* 0.80* 0.77*
MF-DFM DMS 0.96 1.02 1.01 1.00 1.01 1.07 1.14 1.12 1.16 1.10 1.25 0.90 1.19 0.77* 0.78 0.70** 0.69** 0.67**
MF-DFM DMA 0.90* 0.94 0.91 0.93 0.99 1.02 1.16 1.10 1.12 1.08 1.03 0.90 0.97 0.77* 0.77 0.70** 0.70** 0.70**
MF-DFM BMA 0.92 0.96 0.96 0.93 1.01 1.07 1.15 1.03 1.18 1.09 1.01 0.91 0.95 0.79* 0.70* 0.70** 0.70** 0.68**

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.95** 0.95* 0.94** 0.95* 0.90** 0.86** 0.81* 0.77* 0.75* 0.72 0.77* 0.70* 0.72* 0.64* 0.65* 0.62* 0.63* 0.60*
TVP-MF-DFM Median0.95** 0.95* 0.94** 0.95* 0.89** 0.85** 0.81* 0.76* 0.74 0.71 0.76* 0.69* 0.72* 0.64* 0.65* 0.62* 0.63* 0.60*
TVP-MF-DFM DMS 0.99** 0.98* 0.98** 0.99 0.98** 0.92* 0.80 0.75 0.75 0.74 0.78 0.76 0.84 0.71 0.71 0.62 0.62 0.61*
TVP-MF-DFM DMA 0.96* 0.96* 0.95* 0.95* 0.90* 0.87* 0.79 0.76 0.77 0.73 0.78 0.72* 0.82 0.67* 0.68* 0.63* 0.64* 0.64*
TVP-MF-DFM BMA 0.96 0.97 0.96 0.96 0.91* 0.89* 0.80 0.76 0.77 0.74 0.76 0.69* 0.76* 0.64* 0.64* 0.59* 0.59* 0.62*

MF-DFM Mean 0.92** 0.94** 0.92** 0.95** 0.85* 0.85** 0.81 0.80 0.78 0.77 0.85 0.78 0.81 0.69* 0.69* 0.67* 0.67* 0.66*
MF-DFM Median 0.93** 0.94** 0.92** 0.95** 0.85* 0.85** 0.81 0.80 0.77 0.77 0.84 0.78 0.81 0.70* 0.70* 0.68* 0.68* 0.66*
MF-DFM DMS 0.97 1.00 0.95 0.97 0.85 0.98 1.07 0.90 1.00 0.87 1.01 0.76 1.05 0.69* 0.59 0.58* 0.58* 0.59*
MF-DFM DMA 0.95** 0.98 0.92 0.95 0.84 0.97 1.08 0.89 0.99 0.86 0.84 0.76 0.92 0.68* 0.60 0.59* 0.59* 0.61*
MF-DFM BMA 0.97 1.00 1.00 0.95 0.84 0.98 1.12 0.83 1.00 0.88 0.82 0.77 0.84 0.69* 0.54* 0.57* 0.57* 0.59*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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Table A.11: Relative forecast performance, 1 Factors, γ = 0.6

h= 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1 -3 -5

Relative MAD

TVP-MF-DFM Mean 0.94** 0.94 0.93** 0.93 0.87***0.83***0.83** 0.83** 0.82** 0.81** 0.82* 0.77** 0.78** 0.70** 0.70** 0.69** 0.69** 0.68**
TVP-MF-DFM Median0.94** 0.94 0.93* 0.93 0.87***0.83***0.84** 0.84** 0.82** 0.82** 0.82* 0.78** 0.79* 0.71** 0.70** 0.70** 0.70** 0.69**
TVP-MF-DFM DMS 0.95***0.97 0.95** 1.03 0.93** 0.91** 0.93 0.91 0.96 0.92 0.92 0.89 0.92 0.84* 0.84 0.74* 0.76* 0.75*
TVP-MF-DFM DMA 0.95***0.96* 0.95***0.95* 0.88***0.87***0.89* 0.85** 0.88* 0.85* 0.88 0.81* 0.89 0.77* 0.77* 0.74** 0.74* 0.75*
TVP-MF-DFM BMA 0.97** 0.99 0.98 0.99 0.92** 0.90** 0.90 0.89* 0.88* 0.87 0.85* 0.81* 0.84* 0.77* 0.76* 0.72* 0.71** 0.74*

MF-DFM Mean 0.90** 0.91** 0.89* 0.92 0.85** 0.83***1.01 0.92 1.00 0.94 1.00 0.91 0.94 0.78* 0.79* 0.79* 0.79* 0.76*
MF-DFM Median 0.90** 0.91** 0.89* 0.92* 0.84** 0.83***1.01 0.93 0.98 0.93 0.99 0.91 0.94 0.80* 0.80 0.80* 0.80* 0.77*
MF-DFM DMS 0.96 1.02 1.01 0.99 1.02 1.09 1.12 1.13 1.17 1.09 1.23 0.92 1.17 0.75* 0.81 0.71** 0.72* 0.72**
MF-DFM DMA 0.90* 0.94 0.91 0.92 0.99 1.01 1.14 1.11 1.14 1.11 1.01 0.90 0.95 0.78* 0.80 0.74* 0.74* 0.73**
MF-DFM BMA 0.92 0.96 0.96 0.93 1.01 1.07 1.15 1.03 1.18 1.09 1.01 0.91 0.95 0.79* 0.70* 0.70** 0.70** 0.68**

F-MIDAS (Mean) 0.99 0.97 1.02 0.82* 0.97 0.72** 0.88 0.71** 0.76** 0.65***0.73** 0.68**
MF-VAR 0.97 0.99 0.92 0.94 0.85** 0.86** 0.93 0.89 0.83* 0.83* 0.89 0.85* 0.87 0.81 0.78* 0.72** 0.73** 0.73**
Benchmark (abs.) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Relative RMSE

TVP-MF-DFM Mean 0.95** 0.95* 0.94** 0.95* 0.90** 0.86** 0.81* 0.77* 0.75* 0.72 0.77* 0.70* 0.72* 0.64* 0.65* 0.62* 0.63* 0.60*
TVP-MF-DFM Median0.95** 0.95* 0.94** 0.95* 0.89** 0.85** 0.81* 0.76* 0.74 0.71 0.76* 0.69* 0.72* 0.64* 0.65* 0.62* 0.63* 0.60*
TVP-MF-DFM DMS 0.99** 0.99 0.98** 1.00 0.92 0.92* 0.80 0.75 0.80 0.77 0.78 0.75 0.84 0.70 0.71 0.61* 0.62* 0.61*
TVP-MF-DFM DMA 0.96** 0.96* 0.95* 0.95** 0.90* 0.87* 0.80 0.76 0.76 0.73 0.78 0.72* 0.82 0.67* 0.68* 0.64* 0.65* 0.65*
TVP-MF-DFM BMA 0.96 0.97 0.96 0.96 0.91* 0.89* 0.80 0.76 0.77 0.74 0.76 0.69* 0.76* 0.64* 0.64* 0.59* 0.59* 0.62*

MF-DFM Mean 0.92** 0.94** 0.92** 0.95** 0.85* 0.85** 0.81 0.80 0.78 0.77 0.85 0.78 0.81 0.69* 0.69* 0.67* 0.67* 0.66*
MF-DFM Median 0.93** 0.94** 0.92** 0.95** 0.85* 0.85** 0.81 0.80 0.77 0.77 0.84 0.78 0.81 0.70* 0.70* 0.68* 0.68* 0.66*
MF-DFM DMS 0.97 1.00 0.95 0.96 0.85 0.98 1.06 0.91 1.01 0.87 0.99 0.77 1.05 0.68* 0.61 0.59* 0.59* 0.63*
MF-DFM DMA 0.95** 0.98 0.93 0.94 0.84 0.97 1.06 0.90 0.99 0.87 0.83 0.76 0.92 0.69* 0.65 0.61* 0.61* 0.63*
MF-DFM BMA 0.97 1.00 1.00 0.95 0.84 0.98 1.12 0.83 1.00 0.88 0.82 0.77 0.84 0.69* 0.54* 0.57* 0.57* 0.59*

F-MIDAS (Mean) 0.91 0.84 0.88 0.74* 0.81 0.64* 0.73 0.58* 0.64* 0.58* 0.58* 0.60*
MF-VAR 0.96 0.97 0.93* 0.94 0.84* 0.85* 0.80 0.79* 0.78* 0.74* 0.84* 0.82* 0.75* 0.70* 0.71* 0.68* 0.69* 0.68*
Benchmark (abs.) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Notes: See notes in Table A.1.
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